Вища Математика перший курс. Завдання 2. Певний забудовник для будівництва багатоповерхових автомобільних стоянок в центрі міста бере кредити в трьох комерційних банках. Кожен з цих банків запропонував кредити у розмірах відповідно 20 + 24, 30 + 24 і 40 + 24 млн. грн. під річну відсоткову ставку 40 + 6 , 25 + 6 і
30 + 6 %. Яку суму необхідно буде сплатити після закінчення року за
кредити, взяті у банків?
У цьому прикладі ми розглядаємо два вектори : вектор кредитів K =
(20+24; 30+24; 40+24) і вектор процентних ставок P = (40+6; 25+6; 30+6).
Для розрахунків замість вектора процентних ставок P зручніше
використовувати вектор коефіцієнтів Q = (100+40+6/100; 100+25+6/100;
100+30+6/100).
160 | 2 120 | 2 100 | 2
80 | 2 60 | 2 50 | 2
40 | 2 30 | 2 25 | 5
20 | 2 15 | 3 5 | 5
10 | 2 5 | 5 1
5 | 5 1 100 = 2² · 5²
1 120 = 2³ · 3 · 5
160 = 2⁵ · 5
НОД = 2² · 5 = 20 - наибольший общий делитель
160 : 20 = 8 - яблоки
120 : 20 = 6 - апельсины
100 : 20 = 5 - груши
ответ: 20 подарков, в каждом из которых по 8 яблок, 6 апельсинов и 5 груш.
ответ:Когда множества A и B конечны и содержат небольшое число элементов, найти их декартово произведение несложно. А если множества бесконечны? В математике нашли выход из этой ситуации. Наглядное изображение декартова произведения двух числовых множеств можно получить при координатной плоскости. Прямоугольная система координат позволяет каждой точке плоскости поставить в соответствие единственную пару действительных чисел – координаты этой точки. Понятие координат точек на прямой и на плоскости было впервые введено в геометрию французским ученым и философом Рене Декартом в XVII веке. Это событие явилось началом новой эры в математике – эры рождения и развития понятий функции и геометрического преобразования. По имени Рене Декарта прямоугольные координаты на плоскости называют еще декартовыми.
Но как связано с именем Декарта, жившего в XVII веке, понятие декартова произведения множеств, введенное в математику в конце XIXвека? Чтобы ответить на этот во выясним сначала, как используют прямоугольную систему координат для наглядного представления декартова произведения двух числовых множеств.
Пусть А и В – числовые множества. Тогда элементами декартова произведения этих множеств будут упорядоченные пары чисел. Изобразив каждую пару чисел точкой на координатной плоскости, получим фигуру, которая и будет наглядно представлять декартово произведение множеств А и В.
Изобразим на координатной плоскости декартово произведение множеств А и В, если:
1) А = {1, 2, 3}, B = {3, 5};
2) A = {1, 2, 3}, B = [3, 5];
3) A = [1, 3], B = [3, 5];
4) A = R, B = [3, 5];
5) A = R, B = R.
В случае 1 данные множества конечны и содержат небольшое число элементов, поэтому можно перечислить все элементы их декартова произведения: А × В = {(1; 3), (1; 5), (2; 3), (2; 5), (3; 3), (3; 5)}.
Построим оси координат и на оси Ox отметим элементы множества А, а на оси - элементы множества В. Затем изобразим каждую пару чисел из множества А × В точкой на координатной плоскости. Полученная фигура из шести точек и будет наглядно представлять декартово произведение множеств А и В (рис. 1).
В случае 2 перечислить все элементы декартова произведения множеств невозможно, поскольку множество В бесконечное. Но можно представить процесс образования этого декартова произведения: в каждой паре первая компонента либо 1, либо 2, либо 3, а вторая компонента – действительное число из промежутка [3; 5]. Все пары, первая компонента которых есть число 1, а вторая пробегает значения от 3 до 5 включительно, изображаются точками первого отрезка. Аналогично строятся два других отрезка
Пошаговое объяснение: