Т.к. диагональ острого угла биссектриса, то она делит другую диагональ в отношении боковой стороны к основанию. Значит боковая сторона при остром угле относится к большему основанию как 5:8. Пусть х разность оснований. Тогда по теореме Пифагора: 16*16+х*х=у*у, где у больщая боковая сторона. Пусть основания с и д, так, что с-д=х. у=5*с/8. Также понятно, что меньшее основание равно большей боковой стороне, д=у с=х+у. у=0,625х+0,625у 375у=625х 15у=25х 3у=5х 256+х*х=25х*х/9 256*9=16х*х х*х=16*9 х=12 . у=5*12/3=20 д=20 с=20+12=32 Периметр: 32+20+20+16=72+16=88 ответ: 88.
Дана функция y=-x^2 + 6x - 5. График этой функции - парабола ветвями вниз. Вершина параболы Хо = -в/2а = -6/-2 = 3, Уо = -9+18-5 = 4. Точки пересечения оси Ох: -х² + 6х - 5 = 0, Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=6^2-4*(-1)*(-5)=36-4*(-1)*(-5)=36-(-4)*(-5)=36-(-4*(-5))=36-(-(-4*5))=36-(-(-20))=36-20=16;Дискриминант больше 0, уравнение имеет 2 корня: x₁=(√16-6)/(2*(-1))=(4-6)/(2*(-1))=-2/(2*(-1))=-2/(-2)=-(-2/2)=-(-1)=1;x₂=(-√16-6)/(2*(-1))=(-4-6)/(2*(-1))=-10/(2*(-1))=-10/(-2)=-(-10/2)=-(-5)=5.Точка пересечения оси Оу берётся из уравнения при х = 0, у = -5.
По графику (и по анализу) определяем: 1) промежуток убывания функции: х ∈ (3; ∞); 2) при каких значениях x функция принимает отрицательные значения: х ∈ (-∞; 1) ∪ (5; +∞).
с=х+у. у=0,625х+0,625у 375у=625х 15у=25х 3у=5х 256+х*х=25х*х/9
256*9=16х*х х*х=16*9 х=12 . у=5*12/3=20 д=20 с=20+12=32
Периметр: 32+20+20+16=72+16=88
ответ: 88.
,
График этой функции - парабола ветвями вниз.
Вершина параболы Хо = -в/2а = -6/-2 = 3,
Уо = -9+18-5 = 4.
Точки пересечения оси Ох:
-х² + 6х - 5 = 0,
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=6^2-4*(-1)*(-5)=36-4*(-1)*(-5)=36-(-4)*(-5)=36-(-4*(-5))=36-(-(-4*5))=36-(-(-20))=36-20=16;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√16-6)/(2*(-1))=(4-6)/(2*(-1))=-2/(2*(-1))=-2/(-2)=-(-2/2)=-(-1)=1;x₂=(-√16-6)/(2*(-1))=(-4-6)/(2*(-1))=-10/(2*(-1))=-10/(-2)=-(-10/2)=-(-5)=5.Точка пересечения оси Оу берётся из уравнения при х = 0, у = -5.
По графику (и по анализу) определяем:
1) промежуток убывания функции: х ∈ (3; ∞);
2) при каких значениях x функция принимает отрицательные значения:
х ∈ (-∞; 1) ∪ (5; +∞).