Дерево возможностей составляется следующим образом:
Пишем слева цифру, с которой может начинаться число. К примеру, 2. Затем чертятся 2 линии, около которых пишут варианты цифр, которые могут быть на 2 месте. 2 и 3. Выписываем числа : 22, 23. Берем и проделываем ту же операцию с цифрой 3 слева, в дальнейшем опять 2 варианта. Запишем числа: 32, 33. Больше вариантов нет. Сумма находится путем сложения между собой всех полученных чисел, а именно: 22+23+32+23=110
Пошаговое объяснение:
2*4^x-3*10^x=5*25^x
Разделим правую и левую части на 25^x. Получим
4^x 10^x
2 - 3 = 5
25^x 25^x
Так как степени у числетелей и знаменателей одинаковые можно поступить следующим образом
2* (4 : 25)^х - 3*(10 : 25)^х = 5
Во второй дроби можно сократить 10 и 25 на 5. Получаем
2* (4 : 25)^х - 3*(2 : 5)^х = 5
Так как 4 = 2^2, a 25 = 5^2, получим следующее
2* (2 : 5)^2х - 3*(2 : 5)^х = 5
Введем новую переменную t = (2 : 5)^х
Получим новое уравнение
2*t^2 - 3*t = 5
2*t^2 - 3*t - 5 = 0
Решаем через дискриминант. a = 2, b = -3, c = -5
D = b^2 -4ac = 9 - 4*2*(-5) = 9 + 40 = 49
t(1) = (3 - 7) : 4 = -1
t(2) = (3 + 7) : 4 = 2,5
x = -1 нам не подходит, так как ни при каких х (2 : 5)^х не будет отрицательным.
Тогда получаем
(2 : 5)^х = t(2)
(2 : 5)^х = 5 : 2
(2 : 5)^х = (2 : 5)^(-1)
х = -1
ответ: х = -12*4^x-3*10^x=5*25^x
Разделим правую и левую части на 25^x. Получим
4^x 10^x
2 - 3 = 5
25^x 25^x
Так как степени у числетелей и знаменателей одинаковые можно поступить следующим образом
2* (4 : 25)^х - 3*(10 : 25)^х = 5
Во второй дроби можно сократить 10 и 25 на 5. Получаем
2* (4 : 25)^х - 3*(2 : 5)^х = 5
Так как 4 = 2^2, a 25 = 5^2, получим следующее
2* (2 : 5)^2х - 3*(2 : 5)^х = 5
Введем новую переменную t = (2 : 5)^х
Получим новое уравнение
2*t^2 - 3*t = 5
2*t^2 - 3*t - 5 = 0
Решаем через дискриминант. a = 2, b = -3, c = -5
D = b^2 -4ac = 9 - 4*2*(-5) = 9 + 40 = 49
t(1) = (3 - 7) : 4 = -1
t(2) = (3 + 7) : 4 = 2,5
x = -1 нам не подходит, так как ни при каких х (2 : 5)^х не будет отрицательным.
Тогда получаем
(2 : 5)^х = t(2)
(2 : 5)^х = 5 : 2
(2 : 5)^х = (2 : 5)^(-1)
х = -1
ответ: х = -12*4^x-3*10^x=5*25^x
Разделим правую и левую части на 25^x. Получим
4^x 10^x
2 - 3 = 5
25^x 25^x
Так как степени у числетелей и знаменателей одинаковые можно поступить следующим образом
2* (4 : 25)^х - 3*(10 : 25)^х = 5
Во второй дроби можно сократить 10 и 25 на 5. Получаем
2* (4 : 25)^х - 3*(2 : 5)^х = 5
Так как 4 = 2^2, a 25 = 5^2, получим следующее
2* (2 : 5)^2х - 3*(2 : 5)^х = 5
Введем новую переменную t = (2 : 5)^х
Получим новое уравнение
2*t^2 - 3*t = 5
2*t^2 - 3*t - 5 = 0
Решаем через дискриминант. a = 2, b = -3, c = -5
D = b^2 -4ac = 9 - 4*2*(-5) = 9 + 40 = 49
t(1) = (3 - 7) : 4 = -1
t(2) = (3 + 7) : 4 = 2,5
x = -1 нам не подходит, так как ни при каких х (2 : 5)^х не будет отрицательным.
Тогда получаем
(2 : 5)^х = t(2)
(2 : 5)^х = 5 : 2
(2 : 5)^х = (2 : 5)^(-1)
х = -1
ответ: х = -1
Варианты: 22, 23, 32, 33
Сумма: 22+ 23+ 32+33= 110
Пошаговое объяснение:
Дерево возможностей составляется следующим образом:
Пишем слева цифру, с которой может начинаться число. К примеру, 2. Затем чертятся 2 линии, около которых пишут варианты цифр, которые могут быть на 2 месте. 2 и 3. Выписываем числа : 22, 23. Берем и проделываем ту же операцию с цифрой 3 слева, в дальнейшем опять 2 варианта. Запишем числа: 32, 33. Больше вариантов нет. Сумма находится путем сложения между собой всех полученных чисел, а именно: 22+23+32+23=110