сумма квадратов диагоналей параллелограмма = сумме квадратов всех его сторон пусть 1 диагональ(d1)=2х, 2 диагональ(d2)=3х, тогда 4x^2+9x^2=2(529+121) 13x^2=1300 x^2=100 x1=10 x2=-10 не подходит Параллелепипед прямой, значит боковое ребро перпендикулярно плоскости основания, H=10 d1=20, S1=d1*H=20*10=200 d2=30, S2=d2*H=30*10=300
найдем диагональ основания (с) по теореме пифагора: с*с=3*3+4*4=25 с=5 см теперь по той же теореме найдем диагональ (а) параллелепипеда: а*а=5*5+5*5=50 ответ: а=5V2 см (пять корней из двух).
Решение: Обозначим скорость течения реки за (х) км/час, тогда теплоход плыл по течению со скоростью (15+х) км/час, а против течения теплоход плыл со скоростью (15-х) км/час Время теплохода в пути в пункт назначения составило: t=S/V 200/(15+х) Время в пути возврата в пункт отправления равно: 200/(15-х) А так как общее время в пути составило: 40час-10час=30час, составим уравнение: 200/(15+х) +200/15-х)=30 Приведём уравнение к общему знаменателю: (15+х)*(15-х) (15-х)*200 + (15+х)*200=(15+х)*(15-х)*30 3000-200х+3000+200х=6750-30x^2 6000=6750-30x^2 30x^2=6750-6000 30x^2=750 x^2=750 :30 x^2=25 x1,2=+-√25=+-5 х1=5 х2=-5 -не соответствует условию задачи
найдем диагональ основания (с) по теореме пифагора: с*с=3*3+4*4=25 с=5 см теперь по той же теореме найдем диагональ (а) параллелепипеда: а*а=5*5+5*5=50 ответ: а=5V2 см (пять корней из двух).
Обозначим скорость течения реки за (х) км/час,
тогда теплоход плыл по течению со скоростью (15+х) км/час,
а против течения теплоход плыл со скоростью (15-х) км/час
Время теплохода в пути в пункт назначения составило: t=S/V
200/(15+х)
Время в пути возврата в пункт отправления равно:
200/(15-х)
А так как общее время в пути составило: 40час-10час=30час,
составим уравнение:
200/(15+х) +200/15-х)=30
Приведём уравнение к общему знаменателю: (15+х)*(15-х)
(15-х)*200 + (15+х)*200=(15+х)*(15-х)*30
3000-200х+3000+200х=6750-30x^2
6000=6750-30x^2
30x^2=6750-6000
30x^2=750
x^2=750 :30
x^2=25
x1,2=+-√25=+-5
х1=5
х2=-5 -не соответствует условию задачи
ответ: Скорость течения реки 5км/час