Нехай, AB і AC - вектори. Вирахуємо їхні координати:
AB = B - A = (-3; 8) - (5; -7) = (-3 - 5; 8 - (-7)) = (-8; 15); AB = (-8; 15)
AC = C - A = (-10; -15) - (5; -7) = (-10 - 5; -15 - (-7)) = (-15; 8); AC = (-15; 8)
Тепер обчислимо їхню довжину за формулою |AB| = √(a₁² + a₂²):
AB = √((-8)² + 15²) = √289 = 17;
AC = √((-15)² + 8²) = √289 = 17;
Отже, AB = AC, а ΔABC - рівнобедренний з основою BC. В рівнобедренному трикутнику кути при основі рівні, тому ∠B = ∠C. Доведено.
Пояснення:
Задача - довести, що кути рівні. Якщо помістити вказані точки на площину і з'єднати, стає зрозуміло, що трикутник рівнобедрений, при чому кути B і С - кути при основі. Тобто тепер задача зводиться до доведення, що ΔABC - рівнобедренний. Для того щоб це довести, необхідно довести, що AB = AC трикутника рівні. Так як нам відомі координати цих точок, ми можемо обчислити довжину векторів AB і AC, що ми і робимо.
Відповідь:
Нехай, AB і AC - вектори. Вирахуємо їхні координати:
AB = B - A = (-3; 8) - (5; -7) = (-3 - 5; 8 - (-7)) = (-8; 15); AB = (-8; 15)
AC = C - A = (-10; -15) - (5; -7) = (-10 - 5; -15 - (-7)) = (-15; 8); AC = (-15; 8)
Тепер обчислимо їхню довжину за формулою |AB| = √(a₁² + a₂²):
AB = √((-8)² + 15²) = √289 = 17;
AC = √((-15)² + 8²) = √289 = 17;
Отже, AB = AC, а ΔABC - рівнобедренний з основою BC. В рівнобедренному трикутнику кути при основі рівні, тому ∠B = ∠C. Доведено.
Пояснення:
Задача - довести, що кути рівні. Якщо помістити вказані точки на площину і з'єднати, стає зрозуміло, що трикутник рівнобедрений, при чому кути B і С - кути при основі. Тобто тепер задача зводиться до доведення, що ΔABC - рівнобедренний. Для того щоб це довести, необхідно довести, що AB = AC трикутника рівні. Так як нам відомі координати цих точок, ми можемо обчислити довжину векторів AB і AC, що ми і робимо.
изначально было в первом:
V₁ = 8 1/2 + 2 2/5 + 1 1/4 =
= 8,5 + 2,4 + 1,25 = 12,15 (л)
во втором:
V₂ = 8 1/2 - 2 2/5 = 8,5 - 2,4 = 6,1 (л)
в третьем:
V₃ = 8 1/2 - 1 1/4 = 8,5 - 1,25 = 7,25 (л)
ответ: 12,15 л; 6,1 л; 7,25 л.