Внимание 55 ! 1.запишите пять последовательных натуральных чисел кратных 9 начиная с наименьшего. какое число стоит в этом ряду кратных на 50-м месте 2.найдите наименьшее общее кратное данных чисел и запишите ответ с принятого обозначения: 1) 14 и 4, 2) 8 и 32 3.разложите число 45 на простые множители. 4.в пансионат прибыли 74 человека. их должны расселить по домикам, каждыйиз которых вмещает 8 человек. какое количество таких домиков необходимо для этой группы ? может ли получится так.если да, то сколько в нём окажется свободных мест? 5.запишите самое маленькое четырёхзначное число, делящиеся на 6. 6.даша живёт в квартире № 65 шестиэтажного дома . в этом доме во всех подъездах, в котором живёт даша ,и на каком этаже расположена её квартира?
1) 2^8+4^5-8^2=2^8+(2^2)^5-(2^3)^2=2^8+2^10-2^6=2^6*(2^2+2^4-1)=2^6*(4+16-1)=2^6*19=2^5*(2*19)=2^5*38 это выражение делится на 38
(2^5*38)/38=2^5=32 что требовалось доказать
2) 3^11+9^6+27^3=3^11+(3^2)^6+(3^3)^3=3^11+3^12+3^9=3^9*(3^2+3^3+1)=3^9*(9+27+1)=3^9*37=3^8*(3*37)=3^8*111 это выражение делится на 111
(3^8*111)/111=3^8 что требовалось доказать
3) a=9^7+9^6+9^5=(3^2)^7+(3^2)^6+(3^2)^5=3^14+3^12+3^10=3^10*(3^4+3^2+1)=3^10*(81+9+1)=3^10*91.
b=3^10-3^9+3^8=3^8*(3^2-3+1)=3^8*(9-3+1)=3^8*7
(3^10*91)/(3^8*7)=3^2*91/7=9*13=117 что и требовалось доказать а делится на b