Если только так. №1 а) Рассмотрим ΔBCD. ∠BDC = 90°, т.к. CD⊥BD. CD = AB = 34 см Найдем ВС по т. Пифагора. BC = √(BD² + 34²) (см)
б) Рассмотрим ΔBCD. ∠BDC = 90°, т.к. CD⊥BD. CD = AB = 8,5 дм Найдем ВС по т. Пифагора. BC = √(BD² + 8,5²) (дм)
№2 а) В прямоугольном треугольнике, катет лежащий напротив угла в 30°, равен половине гипотенузы. 17 * 2 = 34 (мм) - длина гипотенузы. ответ: 34 мм.
в) 48 : 24 = 1/2 - это отношение катета и гипотенузы. Т. к. катет равен половине гипотенузы, значит, он лежит напротив угла в 30°. Т.к. Δ прямоугольный, значит один из углов равен 90°. 180° - 90° - 30° = 60° - третий угол. ответ: 90°; 60°; 30°.
16х=96 х+2=12:2
х=96;16 х=6-2
х=6 х=4
10:х=5 10х-40=10
х=10:5 10х=10+40
х=2 10х=50
х+2х-1=8 х=50:10
3х=8+1 х=5
3х=9 13х-10х+х-2=2
х=9:3 4х=2+2
х=3
4х=4
х=4:4
х=1
проверку сделай к каждому уравнению,
№1
а) Рассмотрим ΔBCD.
∠BDC = 90°, т.к. CD⊥BD.
CD = AB = 34 см
Найдем ВС по т. Пифагора.
BC = √(BD² + 34²) (см)
б) Рассмотрим ΔBCD.
∠BDC = 90°, т.к. CD⊥BD.
CD = AB = 8,5 дм
Найдем ВС по т. Пифагора.
BC = √(BD² + 8,5²) (дм)
№2
а) В прямоугольном треугольнике, катет лежащий напротив угла в 30°,
равен половине гипотенузы.
17 * 2 = 34 (мм) - длина гипотенузы.
ответ: 34 мм.
в) 48 : 24 = 1/2 - это отношение катета и гипотенузы.
Т. к. катет равен половине гипотенузы,
значит, он лежит напротив угла в 30°.
Т.к. Δ прямоугольный, значит один из углов равен 90°.
180° - 90° - 30° = 60° - третий угол.
ответ: 90°; 60°; 30°.