Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
darya03fox04
31.12.2021 06:19 •
Математика
Воаз Составь задачу по картинке. Реши её с уравнения.
OLM
Lond
17 кг 12
рк
+х.
+
+ Т.
=
Т.
Активация Windo
Чтобы активировать W
раде Параметры
Показать ответ
Ответ:
Vauuu
13.12.2022 08:40
График функции y = x² - 2x - 3 это парабола ветвями вверх.
а) значение функции, соответствующее значению аргумента равному -1.5;
Подставим х = -1,5 в уравнение:
y=(-1,5)²-2*(-1,5)-3 = 2,25.
б) значение аргумента, при котором y= -2;
Составляем уравнение: -2 = x² - 2x - 3.
y = x² - 2x - 1 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-2)²-4*1*(-1)=4-4*(-1)=4-(-4)=4+4=8;Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√8-(-2))/(2*1)=(√8+2)/2=√8/2+2/2=√8/2+1 ≈ 2,4142136;
x_2=(-√8-(-2))/(2*1)=(-√8+2)/2=-√8/2+2/2=-√8/2+1 ≈ -0,4142136.
в)нули функции.
Для этого приравниваем функцию нулю:
x² - 2x - 3 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-2)^2-4*1*(-3)=4-4*(-3)=4-(-4*3)=4-(-12)=4+12=16;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√16-(-2))/(2*1)=(4-(-2))/2=(4+2)/2=6/2=3;
x_2=(-√16-(-2))/(2*1)=(-4-(-2))/2=(-4+2)/2=-2/2=-1.
г) промежутки знакопостоянства функции;
y > 0 ⇒ x ∈ (-∞;-1) ∪ (3;+∞),
y< 0 ⇒ x ∈ (-1;3).
д) промежутки возрастания и убывания функции;
Находим вершину параболы: Хо = -в/2а = 2/(2*1) = 1.
Функция убывает при x ∈ (-∞;1) и возрастает при х ∈ (1;+∞).
е) область значений функции.
Находим минимальное значение функции в её вершине:
Уо = 1² - 2*1 - 3 = 1 - 2 - 3 = -4.
Отсюда ответ: y ∈ R, y ≥ -4.
0,0
(0 оценок)
Ответ:
ratmir10
13.12.2022 08:40
График функции y = x² - 2x - 3 это парабола ветвями вверх.
а) значение функции, соответствующее значению аргумента равному -1.5;
Подставим х = -1,5 в уравнение:
y=(-1,5)²-2*(-1,5)-3 = 2,25.
б) значение аргумента, при котором y= -2;
Составляем уравнение: -2 = x² - 2x - 3.
y = x² - 2x - 1 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-2)²-4*1*(-1)=4-4*(-1)=4-(-4)=4+4=8;Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√8-(-2))/(2*1)=(√8+2)/2=√8/2+2/2=√8/2+1 ≈ 2,4142136;
x_2=(-√8-(-2))/(2*1)=(-√8+2)/2=-√8/2+2/2=-√8/2+1 ≈ -0,4142136.
в)нули функции.
Для этого приравниваем функцию нулю:
x² - 2x - 3 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-2)^2-4*1*(-3)=4-4*(-3)=4-(-4*3)=4-(-12)=4+12=16;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√16-(-2))/(2*1)=(4-(-2))/2=(4+2)/2=6/2=3;
x_2=(-√16-(-2))/(2*1)=(-4-(-2))/2=(-4+2)/2=-2/2=-1.
г) промежутки знакопостоянства функции;
y > 0 ⇒ x ∈ (-∞;-1) ∪ (3;+∞),
y< 0 ⇒ x ∈ (-1;3).
д) промежутки возрастания и убывания функции;
Находим вершину параболы: Хо = -в/2а = 2/(2*1) = 1.
Функция убывает при x ∈ (-∞;1) и возрастает при х ∈ (1;+∞).
е) область значений функции.
Находим минимальное значение функции в её вершине:
Уо = 1² - 2*1 - 3 = 1 - 2 - 3 = -4.
Отсюда ответ: y ∈ R, y ≥ -4.
0,0
(0 оценок)
Популярные вопросы: Математика
lesich3675
11.09.2022 22:39
Есть 6 ячеек, каждая из них генерирует случайное число от 1 до 9. Вопрос: какова вероятность того, в результате: 1 одна из ячеек будет содержать число 1 2 3 из ячеек будут...
keti261
04.12.2022 18:12
Найдите частное, если делимое 950, делитель 33, а остаток 26. Заранее огромное...
nodiramahammadz
18.02.2023 20:24
Маса 1дм³ заліза дорівнює 7 4/5кг. Яка маса 3/4 дм³заліза?...
Вова200711
28.02.2020 11:52
Здравствуйте. Задали задачу по статистике. Условие: определить индивидуальные индексы, общие индексы издержек и физического объёма. Решение уже есть, прикрепляю, но огромная...
vikadmitrieva5
13.01.2020 22:14
зайк: очень сильно вас ,от...
SeverinaWinter
10.01.2022 05:02
Опишите по графику ВСЕ свойства функции...
evstratenko001
27.04.2021 04:46
Очень ! Числа a, b, c — натуральные. Выберите все верные утверждения. если a⫶c и b⫶c, то (a+b)⫶c если (a−b)⫶c, то a⫶c и b⫶c если (a−b)⫶c и a⫶c, то b⫶c если a⫶c, то ab⫶c если...
VladimirOwl
13.02.2023 17:07
Расскажить о деление согласных по мягкости-твердости, звонкости глухости?...
LilyaDolz
27.12.2022 16:59
с задачей Высота цилиндра равна радиусу основания. Площаль развернутой боковой поверхности цилиндра равна 882π. Найти образующую цилиндра...
KseniaДьявол
11.04.2022 18:52
5400 округлите до ближайшего целого числа кратного 10...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
а) значение функции, соответствующее значению аргумента равному -1.5;
Подставим х = -1,5 в уравнение:
y=(-1,5)²-2*(-1,5)-3 = 2,25.
б) значение аргумента, при котором y= -2;
Составляем уравнение: -2 = x² - 2x - 3.
y = x² - 2x - 1 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-2)²-4*1*(-1)=4-4*(-1)=4-(-4)=4+4=8;Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√8-(-2))/(2*1)=(√8+2)/2=√8/2+2/2=√8/2+1 ≈ 2,4142136;
x_2=(-√8-(-2))/(2*1)=(-√8+2)/2=-√8/2+2/2=-√8/2+1 ≈ -0,4142136.
в)нули функции.
Для этого приравниваем функцию нулю:
x² - 2x - 3 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-2)^2-4*1*(-3)=4-4*(-3)=4-(-4*3)=4-(-12)=4+12=16;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√16-(-2))/(2*1)=(4-(-2))/2=(4+2)/2=6/2=3;
x_2=(-√16-(-2))/(2*1)=(-4-(-2))/2=(-4+2)/2=-2/2=-1.
г) промежутки знакопостоянства функции;
y > 0 ⇒ x ∈ (-∞;-1) ∪ (3;+∞),
y< 0 ⇒ x ∈ (-1;3).
д) промежутки возрастания и убывания функции;
Находим вершину параболы: Хо = -в/2а = 2/(2*1) = 1.
Функция убывает при x ∈ (-∞;1) и возрастает при х ∈ (1;+∞).
е) область значений функции.
Находим минимальное значение функции в её вершине:
Уо = 1² - 2*1 - 3 = 1 - 2 - 3 = -4.
Отсюда ответ: y ∈ R, y ≥ -4.
а) значение функции, соответствующее значению аргумента равному -1.5;
Подставим х = -1,5 в уравнение:
y=(-1,5)²-2*(-1,5)-3 = 2,25.
б) значение аргумента, при котором y= -2;
Составляем уравнение: -2 = x² - 2x - 3.
y = x² - 2x - 1 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-2)²-4*1*(-1)=4-4*(-1)=4-(-4)=4+4=8;Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√8-(-2))/(2*1)=(√8+2)/2=√8/2+2/2=√8/2+1 ≈ 2,4142136;
x_2=(-√8-(-2))/(2*1)=(-√8+2)/2=-√8/2+2/2=-√8/2+1 ≈ -0,4142136.
в)нули функции.
Для этого приравниваем функцию нулю:
x² - 2x - 3 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-2)^2-4*1*(-3)=4-4*(-3)=4-(-4*3)=4-(-12)=4+12=16;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√16-(-2))/(2*1)=(4-(-2))/2=(4+2)/2=6/2=3;
x_2=(-√16-(-2))/(2*1)=(-4-(-2))/2=(-4+2)/2=-2/2=-1.
г) промежутки знакопостоянства функции;
y > 0 ⇒ x ∈ (-∞;-1) ∪ (3;+∞),
y< 0 ⇒ x ∈ (-1;3).
д) промежутки возрастания и убывания функции;
Находим вершину параболы: Хо = -в/2а = 2/(2*1) = 1.
Функция убывает при x ∈ (-∞;1) и возрастает при х ∈ (1;+∞).
е) область значений функции.
Находим минимальное значение функции в её вершине:
Уо = 1² - 2*1 - 3 = 1 - 2 - 3 = -4.
Отсюда ответ: y ∈ R, y ≥ -4.