Вобменном пункте можно совершить одну из двух операции: 1)за 3 золотые монеты получить 8 серебряных и одну бронзовую2)за 12 серебряные получить 4 золотые и одну бронзовую у даши были только серебряные монеты. после нескольких операций обменном пункта серебряных монет у неё стало меньше, золотые не появились, зато появились 14 бронзовых. на сколько уменьшилось количество серебряных монет.
Нехай швидкість поїзда - х, відстань між станціями А і В - у.
Щоб знайти відстань(у), треба час(10 год) помножити на швидкість(х):
у = 10х
Іще нам відомо, що якби швидкість поїзда була на 10 Км/год більша, то він пройшов би цей шлях за 8 год. Тоді складаємо ще одне рівняння для знаходження відстані між станціями:
у = 8(х + 10)
Обидва рівняння потрібні для знаходження однієї величини - відстані, тому ставимо між ними знак "=" і розв'язуємо рівняння:
10х = 8(х + 10)
10х = 8х + 80
10х - 8х = 80
2х = 80
х = 80:2
х = 40 (км/год) - швидкість поїзда
Тепер підставляємо знайдену швидкість поїзда в одне з рівнянь (наприклад, у перше):
10 год * 40 км/год = 400 (км) - відстань між станціями А і В
Відповідь: Швидкість поїзда - 40 км/год, відстань між станціями А і В - 400 км.
Переходя к определению дифференциала
- уравнение с разделёнными переменными
Интегрируя обе части уравнения, получаем
Получили общий интеграл.
Найдем решение задачи Коши
- частный интеграл.
б)
Классификация: Дифференциальное уравнение второго порядка с постоянными коэффициентами, относится к первому виду со специальной правой части.
Нужно найти: уо.н. = уо.о. + уч.н., где уо.о. - общее решение однородного уравнения, уч.н. - частное решением неоднородного уравнения.
1) Найдем общее решение соответствующего однородного уравнения
Перейдем к характеристическому уравнению, пользуясь методом Эйлера.
Пусть , тогда получаем
Тогда общее решением однородного уравнения примет вид:
2) Нахождение частного решения.
Рассмотрим функцию
Сравнивая с корнями характеристического уравнения и принимаем во внимания что n=1, то частное решением будем искать в виде:
yч.н. =
Предварительно вычислим 1 и 2 производные функции
Подставим в исходное уравнение
Приравниваем коэффициенты при степени х
Частное решение будет иметь вид: уч.н. = 2х + 2
Тогда общее решение неоднородного уравнения:
уо.н. =
Найдем решение задачи Коши
Частное решение: уo.н. =