Вокруг поля стадиона, имеющего форму фигуры, состоящей из прямоугольника 100м×40м и двух полукругов радиуса 20м, проложили беговую дорожку шириной 2 м. сколько примерно тонн гравия нужно, чтобы покрыть дорожку равномерным слоем гравия, если на каждый квадратный метр уложить 30 кг гравия? а. 2т. б. 4т. в. 20т. г. 40т.
То есть, чтобы сложить смешанное число с обыкновенной дробью, нужно целую часть переписать (в данном случае это 5 целых), затем найти общий знаменатель (то есть такое число, которое делится и на 8 и на 2, это 2, так как 8:2=4, 2:2=1, но это в данном случае). Потом написать дополнительные множители, для этого общий знаменатель 8 делим вначале на 2, затем на 8.
8:2=4 (дополнительный множитель к первой дроби), 8:8=1 (дополнительный множитель ко второй дроби). Умножаем числитель первой дроби на её дополнительный множитель, то есть 1 (числитель 1 дроби) умножаем на 4 (дополнительный множитель 1 дроби). Тоже самое делаем со второй дробью. 7 (числитель 2 дроби) умножаем на 1 (дополнительный множитель 2 дроби).
5. 1) y = e^(5x)*(x^2 + 1)^3
y' = 5e^(5x)*(x^2 + 1)^3 + e^(5x)*3(x^2 + 1)^2*3x^2
2) y = 6x^2 - 2x^(-4) + 5
y' = 12x - 2(-4)*x^(-5) = 12x + 8/x^5
6. найдём точку пересечения прямых.
{ 3x + 2y - 13 = 0
{ x + 3y - 9 = 0
умножаем 2 уравнение на - 3
{ 3x + 2y = 13
{ - 3x - 9y = 27
складываем уравнения
-7y = 40; y = - 40/7
подставляем во 2 уравнение
x = 9 - 3y = 63/7 + 120/7 = 183/7
это точка (183/7; - 40/7)
если прямая параллельна x/4 + y/5 = 1, то она имеет такие же коэффициенты.
(x - 183/7)/4 + (y + 40/7)/5 = 0
умножаем все на 20
(5x - 915/7) + (4y + 160/7) = 0
5x + 4y - 755/7 = 0
35x + 28y - 755 = 0