Пошаговое объяснение:1. Треугольник задан вершинами A(-6; -2), B(4; 8), C(2; -8). Найти:
а) уравнение прямой BN, параллельной стороне AC;
составим уравнение прямой BN, параллельной стороне AC (с угловым коэффициентом AC), проходящую через точку B;
угловой коэффициент AC: k= (-8+2)/(+2+6) = -6/8 = -3/4
уравнение прямой BN: (x-4)/-4 = (y-8)/3 ;
y = (-3/4)x + 11;
б) уравнение медианы CD;
середина стороны AB - точка D: (-1; 3);
Уравнение медианы CD:
(x-2)/(-1-2) = (y+8)/(3+8);
(x-2)/-3 = (y+8)/11;
y = -11x/3 - 2/3;
в) уравнение высоты AE;
угловой коэффициент BC: k=(-16)/(-2) = 8;
Так как AE ┴ BC угловой коэффициент AE: k=-1/8
A(-6; -2); уравнение высоты AE:
(x+6)/-8 = (y+2)/1;
y=(-1/8)x - 11/4;
уравнение стороны BC (угловой коэффициент +8);
(x-4)/1=(y-8)/8;
y= 8x-24;
г) угол B .
Угол В - это угол между направляющими векторами прямых BA и BC; Векторы BA(-10;-10); BC(-2;-16). Косинус угла между векторами находится по формуле:
cosB равно скалярному произведению (сумма произведений соответствующих координат) (-10*-2)+(-10* -16)= 180. деленному на произведение их длин
√(10²+10²) *√(2² +16²) = 20√130
cosB = 180 / 20√130 = 9/√130 ≈ 0.789
Угол В = arccos (9/√130) ≈ 0.661 радиан ≈ 37.9°
Пошаговое объяснение:
194.
1) 13:6 = 13/6 = 2 1/6
2) 43:5 = 43/5 = 8 3/5
3) 70:11 = 70/11 = 6 4/11
195.
1) 2 1/6 = 13/6
2) 1 12/17 = 29/17
3) 4 4/5 = 24/5
4) 12 7/20 = 247/20
196.
1) 9+3/17 = 9 3/17
2) 9/72+5 = 5 1/8
3) 4 5/18 + 2 4/18 = 6 9/18 = 6 1/2
4) 6 7/15 - 2 3/15 = 4 4/15
5) 9 11/16 + 4 3/16 - 2 2/16 = 13 14/16 - 2 2/16 = 11 12/16 = 11 3/4
6) 15 7/10 + 2 2/10 - 4 1/10 = 17 9/10 - 4 1/10 = 13 8/10 = 13 4/5
197.
1) 7 9/16 + 8 7/16 = 15 16/16 = 16
2) 4 9/19 + 5 13/19 = 9 22/19 = 10 3/19
3) 1 - 16/25 = 25/25 - 16/25 = 9/25
4) 4 - 1 7/12 = 3 12/12 - 1 7/12 = 2 5/12
5) 6 5/14 - 2 11/14 = 5 19/14 - 2 11/14 = 3 8/14 = 3 4/7
6) 19 11/35 - 12 29/35 = 18 46/35 - 12 29/35 = 6 17/35
Пошаговое объяснение:1. Треугольник задан вершинами A(-6; -2), B(4; 8), C(2; -8). Найти:
а) уравнение прямой BN, параллельной стороне AC;
составим уравнение прямой BN, параллельной стороне AC (с угловым коэффициентом AC), проходящую через точку B;
угловой коэффициент AC: k= (-8+2)/(+2+6) = -6/8 = -3/4
уравнение прямой BN: (x-4)/-4 = (y-8)/3 ;
y = (-3/4)x + 11;
б) уравнение медианы CD;
середина стороны AB - точка D: (-1; 3);
Уравнение медианы CD:
(x-2)/(-1-2) = (y+8)/(3+8);
(x-2)/-3 = (y+8)/11;
y = -11x/3 - 2/3;
в) уравнение высоты AE;
угловой коэффициент BC: k=(-16)/(-2) = 8;
Так как AE ┴ BC угловой коэффициент AE: k=-1/8
A(-6; -2); уравнение высоты AE:
(x+6)/-8 = (y+2)/1;
y=(-1/8)x - 11/4;
уравнение стороны BC (угловой коэффициент +8);
(x-4)/1=(y-8)/8;
y= 8x-24;
г) угол B .
Угол В - это угол между направляющими векторами прямых BA и BC; Векторы BA(-10;-10); BC(-2;-16). Косинус угла между векторами находится по формуле:
cosB равно скалярному произведению (сумма произведений соответствующих координат) (-10*-2)+(-10* -16)= 180. деленному на произведение их длин
√(10²+10²) *√(2² +16²) = 20√130
cosB = 180 / 20√130 = 9/√130 ≈ 0.789
Угол В = arccos (9/√130) ≈ 0.661 радиан ≈ 37.9°
Пошаговое объяснение:
194.
1) 13:6 = 13/6 = 2 1/6
2) 43:5 = 43/5 = 8 3/5
3) 70:11 = 70/11 = 6 4/11
195.
1) 2 1/6 = 13/6
2) 1 12/17 = 29/17
3) 4 4/5 = 24/5
4) 12 7/20 = 247/20
196.
1) 9+3/17 = 9 3/17
2) 9/72+5 = 5 1/8
3) 4 5/18 + 2 4/18 = 6 9/18 = 6 1/2
4) 6 7/15 - 2 3/15 = 4 4/15
5) 9 11/16 + 4 3/16 - 2 2/16 = 13 14/16 - 2 2/16 = 11 12/16 = 11 3/4
6) 15 7/10 + 2 2/10 - 4 1/10 = 17 9/10 - 4 1/10 = 13 8/10 = 13 4/5
197.
1) 7 9/16 + 8 7/16 = 15 16/16 = 16
2) 4 9/19 + 5 13/19 = 9 22/19 = 10 3/19
3) 1 - 16/25 = 25/25 - 16/25 = 9/25
4) 4 - 1 7/12 = 3 12/12 - 1 7/12 = 2 5/12
5) 6 5/14 - 2 11/14 = 5 19/14 - 2 11/14 = 3 8/14 = 3 4/7
6) 19 11/35 - 12 29/35 = 18 46/35 - 12 29/35 = 6 17/35