S(пол) = S(осн)+S(бок) . Если боковые грани наклонены к плоскости основания под одинаковым углом (в данном случае α), то высота пирамиды проходит через центр окружности вписанной в основании. S(осн) =b*b*sinβ =b²sinβ. С другой стороны S(осн) =p*r =(4b/2)*r =2b*r⇒r =b²sinβ/2b = bsinβ/2.(Это можно было написать сразу). S(бок) =4*b*h/2=2bh , где h апофема боковой грани. r =h*cosα ⇒h =r/cosα = (bsinβ/2)/cosα =bsinβ/(2cosα) . Следовательно: S(бок)=2bh=2b*(bsinβ/(2cosα)) = b²sinβ/sinα (И это можно было написать сразу). Окончательно : S(пол) = b²sinβ+ b²sinβ/sinα =b²sinβ(1+ 1/sinα)=b²(sinβ/sinα)*(1+ sinα).
получилим 4x^2(-xcosx+3sinx) теперь поделим числитель на синус, тогда
4x^2(-xctgx+3) косинус делить на синус эт котангенс. Но, мы не можем просто поделить числитель на синус, не изменив дроби, значит нужно либо умножить числитель на синус, либо разделить знаменатель на синус, что ,в общем-то,одно и то же, и тогда у синуса в знаменателе пропадет квадрат. Я не знаю зачем, но котангенс икс заменили как 1/tgx, и получили -x/tgx. Как по мне этого можно было не делать, но почему нет. От себя совет, обращайте внимание на проблему в целом, в данном случае, как мне кажется, вы начали смотреть откуда появился тангенс и зациклились на нем и числителе, не заметив, что у синуса в знаменателе пропал квадрат, а именно это и наталкивает на мысль, что мы просто сократили дробь на синус икс. Всего доброго)
S(пол) = S(осн)+S(бок) .
Если боковые грани наклонены к плоскости основания под одинаковым углом (в данном случае α), то высота пирамиды проходит через центр окружности вписанной в основании.
S(осн) =b*b*sinβ =b²sinβ.
С другой стороны S(осн) =p*r =(4b/2)*r =2b*r⇒r =b²sinβ/2b = bsinβ/2.(Это можно было написать сразу).
S(бок) =4*b*h/2=2bh , где h апофема боковой грани.
r =h*cosα ⇒h =r/cosα = (bsinβ/2)/cosα =bsinβ/(2cosα) .
Следовательно: S(бок)=2bh=2b*(bsinβ/(2cosα)) = b²sinβ/sinα (И это можно было написать сразу).
Окончательно :
S(пол) = b²sinβ+ b²sinβ/sinα =b²sinβ(1+ 1/sinα)=b²(sinβ/sinα)*(1+ sinα).
ответ: b²(sinβ/sinα)*(1+ sinα).
1+sinα = 1+cos(π/2 -α) =2cos²(π/4 -α/2).
1+sinα =sinπ/2 +sinα =...
Пошаговое объяснение:
Смотрите в числителе вынесли 4x^2
получилим 4x^2(-xcosx+3sinx) теперь поделим числитель на синус, тогда
4x^2(-xctgx+3) косинус делить на синус эт котангенс. Но, мы не можем просто поделить числитель на синус, не изменив дроби, значит нужно либо умножить числитель на синус, либо разделить знаменатель на синус, что ,в общем-то,одно и то же, и тогда у синуса в знаменателе пропадет квадрат. Я не знаю зачем, но котангенс икс заменили как 1/tgx, и получили -x/tgx. Как по мне этого можно было не делать, но почему нет. От себя совет, обращайте внимание на проблему в целом, в данном случае, как мне кажется, вы начали смотреть откуда появился тангенс и зациклились на нем и числителе, не заметив, что у синуса в знаменателе пропал квадрат, а именно это и наталкивает на мысль, что мы просто сократили дробь на синус икс. Всего доброго)