Впервом сундуке лежит 111 монет, во втором — 222 монеты, в третьем — 333 монеты, а в четвертом — 444 монеты. иван-дурак может взять из любого сундука 3 монеты и разложить по одной монете в оставшиеся сундуки. эту операцию он может повторить сколь угодно много раз.
в условиях предыдущей в любой момент иван может забрать все монеты из одного сундука. какое наибольшее количество монет он может себе обеспечить?
Дано: равные суммы покупок
Аня : 2р + 7к + 1б = С
Варя: 5р + 6к + 5б = С
Саша: 8р + 4к + 9б = С
Найти: Кто купил со скидкой?
Решение.
У Саши больше всего куплено по количеству. Но мы не знаем цены, возможно, карандаши САМЫЕ дорогие, а их у Саши меньше, чем у остальных. Скорее всего, что так, потому как Аня на те же деньги купила меньше, прмерно в два раза, по общему количеству, но зато у нее больше всего карандашей.
Сложим покупки Ани и Саши. На двойную сумму ( 2С) можно купить:
(2+8)р + (7+4)к + (1+9)б = 2С
и соответственно, на одну сумму:
5р + 5,5к + 5 б = С
Но Варя купила на те же деньги не 5,5. а 6 карандашей, т.е. она не заплатила БОЛЬШЕ, значит, Варя получила скидку в размере половины цены карандаша.
ответ: Варя получила скидку
Вероятность брака - 13/120 ≈ 0,1083 ≈ 10,8%.
Даны такие "неудобные" числа, что даже трудно выбрать как вычислять - точно, но в натуральных дробях или приблизительно - в десятичных.
НАЙТИ: Вероятность БРАКА.
Пошаговое объяснение:
Расчет сведен в таблицу и даже в двух вариантах. Таблица в приложении.
Для определённости дадим рабочим традиционные русские фамилии.
Мой ответ - "ответ Замятина - НЕ НУЖНОЕ - не использовать - дано для общего развития."
Событие по задаче - случайная деталь и будет браком состоит из двух независимых.
Вероятность выбрать случайную деталь из 60 штук находим разделив в отношении 1:2:3 и получаем:
Р11 = 1/6, Р12=1/3 и Р13= 1/2. - вероятности выбрать случайную деталь из 60 штук. Проверили - сумма равна 1 (доля в бригаде).
Теперь находим вероятность БРАКА у каждого рабочего по формуле: Q= 1 - P.
q21 = 1 - p21 = 1 - 0.95 = 0.05 = 1/20 - вероятность брака у Иванова.
Аналогично: q22 = 0,15 = 3/20, q32 = 0,1 = 1/10 - у других рабочих.
И теперь собственно решение задачи: случайная задача будет браком состоит из трёх событий: Иванов И брак ИЛИ Петров И брак ИЛИ Сидоров И брак. Пишем формулу:
Q(А) = p11*q21 + p21*q22 + p31*q23 = 1/120 + 1/20 + 1/20 = 13/120 - вероятность бракованной детали.
Понятно, что вероятность годной детали будет: P(A) = 1 - Q(A) = 107/120 - ответ точный или то же но в десятичных дробях - 0,1083 - брак и 0,8917 - годные.
А далее по формуле Байеса находим, что этот брак сделал НЕ ИВАНОВ