В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Кирито7449
Кирито7449
10.01.2023 03:54 •  Математика

Вправильной 3-угольной пирамиде с высотой 5√6 и стороной основания 5√2 через точку p , принадлежащую ребру ас так , что ap: pc=5: 3 , проведено сечение пирамиды плоскостью , перпендикулярной ребру ас . найдите площадь сечения s.

Показать ответ
Ответ:
lisadonik
lisadonik
07.10.2020 16:43
Для начала, сечение перпендикулярной ребру АС - это треугольник
допустим он будет PMN, где MP⊥AC и NP⊥AC
так как пирамида правильная то высота проецируется в центр ее основания, то есть в точке биссектрис/медианов и высот O
из ΔABK, AB=a, AK=a/2 где a сторона основания
по Пифагору BK²=a²-(a/2)²  BK=(a√3)/2
ΔCBK и ΔCNP похожи, значит CK:CP=BK:NP CK=a/2 так как BK так же медиана
мы знаем что P делит AC как 5։3 значит AP=5a/8 PC=3a/8
получаем NP=(CP*BK)/CK=(3a/8)*((a√3)/2)/(a/2)
NP=(3a√3)/8=3√3/8*5√2 =(15√6)/8

мы знаем что медианы треугольника пересекаются в одной точке и делятся этой точкой на две части в отношении 2:1, считая от вершины
значит BK делится на BO:OK=2:1 так как BK=(a√3)/2 то BO=(a√3)/3 OK=(a√3)/6 => BO=√3/3 * 5√2 =(5√6)/3
из Δ BSO знаем высоту и BO, по Пифагору получаем ребро пирамиды
BS²=(5√6)²+ ((5√6)/3)²=150+150/3=200  BS=10√2
знаем SA=SС=10√2  знаем AK=a/2=(5√2)/2 по Пифагору из ΔSAK получаем SK²=(10√2)²-((5√2)/2)²=200-50/4=750/4  SK=(5√30)/2
ΔSKC и ΔMPC похожи =>MP:SK=CP:CK
MP=CP*SK/CK=(3a/8)*((5√30)/2)/(a/2)=3/4 * (5√30)/2 =(15√30)/8

треугольники ΔCBK и ΔCNP похожи => CP:PK=CN:NB
треугольники ΔCSK и ΔCMP похожи => CP:PK=CM:MC
отсюда получаем CN:NB = CM:MC значит треугольники ΔCBS и ΔСNM тоже похожи а это значит SB║MN и MN:SB=CN:CB
CN:CB=CP:CK=3a/8 : a:2 = 3:4
MN:SB=3:4  => MN=SB*3/4=10√2 *3/4=(15√2)/2

треугольник сечение ΔMNP с сторонами
MN=(15√2)/2
NP=(15√6)/8
MP=(15√30)/8

можно использовать формулу Герона S=\sqrt{P(P-a)(P-b)(P-c)}
где P полупериметр треугольника abc стороны

можно еще опустить высоту с точки M на NP скажем MO1
MO1:SO  тоже будет как 3։4 получим MO1=15√6/4

и S(MNP)=MO1*NP/2 = 15√6/4 * (15√6)/8 / 2 = 225*6/64=675/32=21,09375
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота