Впрямоугольном треугольнике abc с прямым углом a проведена высота ah. на отрезке bh отмечена точка k, а на отрезке ch - точка m так, что bk: kh=1: 2 и cm: mh=1: 10. точка o - точка пересечения высот треугольника akm. найдите ao: oh.
По условию задачи чертим рисунок, получаем трапецию АВСД, в которой АВ - расст м/д центрами окружностей, СД - длина общей касательной = 12 см, ВС - радиус =1 см, АД - радиус =6 см. Найти надо АВ-?
Решение: 1) АВСД - трапеция по определению, так как по условию АД и ВС перпендикулярны СД (как радиусы к общей касательной), => AD||BC . 2) Опустим высоту ВН, Н∈АД и ВН=СД=12 см, => тр АВН (уг Н=90*) - прямоугольный, АН = АД - ВН = АД-ВС; АН = 6-1 = 5 см => по т Пифагора АВ²=АН²+ВН² => АВ² = 12²+5², АВ² = 144+25 = 169; АВ = 13 см
ответ: Расстояние м/д центрами данных окружностей равно 13 см
Найти надо АВ-?
Решение:
1) АВСД - трапеция по определению, так как по условию АД и ВС перпендикулярны СД (как радиусы к общей касательной), => AD||BC .
2) Опустим высоту ВН, Н∈АД и ВН=СД=12 см, => тр АВН (уг Н=90*) - прямоугольный, АН = АД - ВН = АД-ВС; АН = 6-1 = 5 см
=> по т Пифагора
АВ²=АН²+ВН² => АВ² = 12²+5², АВ² = 144+25 = 169; АВ = 13 см
ответ:
Расстояние м/д центрами данных окружностей равно 13 см
× 18 × 32 × 70 ×3600 ×24 × 67 × 30
2112 970 =21630 1128 3052 1463 =15480
264 1455 564 1526 1254
=4752 =15526 =676800 =18312 =14003
234
× 1800
1872
234
=321200