В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История

Впрямоугольном треугольнике точка касания вписанной окружности делит гипотенузу на отрезки длиной 6 см и 12 см. найти меньший катет

Показать ответ
Ответ:
sosochek47
sosochek47
05.07.2020 09:23
Рисуем треугольник и вписываем в него окружность. Востанавливаемв точки касания окружности со сторонами перпендикуляры. Далее соединяем центр окружности с вершинами треуголника, получаем 6 треугольников, которые попарно равны друг другу. Равны между собой треугольники у которых общие стороны отрезки соединяющие центр окружности с вершиной треугольника. Тогда длины катетов равны 5+а и 12+а. Поскольку гипотенуза равна 17, то из теоремы Пифагора 17^2=(5+а) ^2+(12+а) ^2. Полученное квадратное уравнение дает два решения а=3 см и а=-20 см (Ха-ха, смешно!) . Тогда катеты равны 8см и 15 см соответственно возводим в квадрат и проверяем: 64+225=289=17^2. Все верно! Ура!
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота