Расстояние от метеорологической станции до избушки лесника- 18 км, Лыжник этого расстояния. двигаясь со скоростью 200 м/мин. Сколько часов шёл лыжник ? Сможет ли он пройти оставшееся расстояние за полчаса если он будет двигаться с токой же скоростью18*2/3=12км лыжник12км=12000м12000/200=60мин=1 час12/1=12км/ч - скорость(18-12)/12=0,5 часа - сможет...18*2:3=12 км лыжник 12 км = 12000 м12000:200=60 мин =1ч. - шёл лыжник ответ : лыжник шёл 1 ч. Да , он сможет пройти оставшееся расстояние за полчаса если он будет двигаться с такой же скоростью.
1. Рекуррентное соотношение an = an – 1 + 2 вместе с условием a1 = 1 задает арифметическую прогрессию с первым членом 1 и разностью 2: 1, 3, 5, 7, … . Это последовательность нечетных чисел. 2. Рекуррентное соотношение an = 2an – 1 вместе с условием a1 = 1 задает геометрическую прогрессию с первым членом 1 и знаменателем 2: 1, 2, 22, 23, … . Это последовательность степеней двойки, начиная с нулевой степени. Кстати, иногда члены последовательности удобно нумеровать с нуля, или вообще выбирать другой нумерации. 3. Рекуррентное соотношение an = an – 1 + an – 2 вместе с условием a0 = 0, a1 = 1 задает последовательность чисел Фибоначчи: 0, 1, 1, 2, 3, 5, 8, 13, 21, … .
2. Рекуррентное соотношение an = 2an – 1 вместе с условием a1 = 1 задает геометрическую прогрессию с первым членом 1 и знаменателем 2: 1, 2, 22, 23, … . Это последовательность степеней двойки, начиная с нулевой степени.
Кстати, иногда члены последовательности удобно нумеровать с нуля, или вообще выбирать другой нумерации.
3. Рекуррентное соотношение an = an – 1 + an – 2 вместе с условием a0 = 0, a1 = 1 задает последовательность чисел Фибоначчи: 0, 1, 1, 2, 3, 5, 8, 13, 21, … .