В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
natalyacomandi
natalyacomandi
05.04.2022 08:47 •  Математика

Всё на фото ...................................................


Всё на фото ...................................................

Показать ответ
Ответ:
EugeneEugene007
EugeneEugene007
02.05.2021 03:22

1

В принципе, тут всё устно находится: перебираем случаи z=9,8,...,1,0, и имеем сумму (5+6+...+10)+9+8+7+6=75.

Но можно посчитать и для более общего случая (такая задача возникает при подсчёте числа счастливых билетов). Уравнение x+y+z=k имеет f(k)=(k+2)(k+1)/2 решений в целых неотрицательных числах, что можно найти или через число сочетаний с повторениями из 3 по k, или как сумму чисел от 1 до k+1 для x=k,k-1,...,1,0. Если k<=9, то решений в десятичных цифрах столько же. При k>=10 появляются "лишние" решения, то есть такие, где x>=10 или y>=10 или z>=10. Если x>=10, то полагаем x'=x-10 и находим число решений для уравнения x'+y+z=k-10, которое находится по той же формуле, что и выше, с заменой k на k-10. Столько же "лишних" решений для случаев y>=10 и z>=10. При k<=19 неравенства не могут выполняться одновременно. Это даёт ответ f(k)-3f(k-10). При k=13 имеем f(13)-3f(3)=105-30=75

0,0(0 оценок)
Ответ:
MaRiNa4ToP
MaRiNa4ToP
09.12.2021 14:58

1

В принципе, тут всё устно находится: перебираем случаи z=9,8,...,1,0, и имеем сумму (5+6+...+10)+9+8+7+6=75.

Но можно посчитать и для более общего случая (такая задача возникает при подсчёте числа счастливых билетов). Уравнение x+y+z=k имеет f(k)=(k+2)(k+1)/2 решений в целых неотрицательных числах, что можно найти или через число сочетаний с повторениями из 3 по k, или как сумму чисел от 1 до k+1 для x=k,k-1,...,1,0. Если k<=9, то решений в десятичных цифрах столько же. При k>=10 появляются "лишние" решения, то есть такие, где x>=10 или y>=10 или z>=10. Если x>=10, то полагаем x'=x-10 и находим число решений для уравнения x'+y+z=k-10, которое находится по той же формуле, что и выше, с заменой k на k-10. Столько же "лишних" решений для случаев y>=10 и z>=10. При k<=19 неравенства не могут выполняться одновременно. Это даёт ответ f(k)-3f(k-10). При k=13 имеем f(13)-3f(3)=105-30=75

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота