15 - 5d = 21 - 8d 8d - 5d = 21 - 15 3d = 6 d = 6 : d d = 2 - разность прогрессии, и, соответственно, количество подтягиваний, на которое Фродо ежедневно увеличивал нагрузку.
Подставим d = 2 в любое уравнение, например, 15 = а1 + d(6-1) 15 = а1 + 2(6-1) 15 = а1 + 2•5 а1 = 15 - 10 а1 = 5 раз Фродо подтянутся 1-го января.
Поскольку весы именно чашечные, то задача нахождения фальшивой монеты из N сводится к бинарному поиску - мы каждый раз делим исходную кучку пополам (или на три части, если пополам не делится), определяем ту, которая легче, затем поступаем с ней аналогично. И т.д. пока сравнение не сведется к 2-м монетам - более легкая из них и есть искомая. При этом для N монет нам понадобится log2(N) взвешиваний. Если N не степень двойки, то округление идет до ближайшей СЛЕДУЮЩЕЙ. Т.о. в нашем примере log2(N) = 4. Откуда N = 2^4 = 16. 16 монет.
6 января Фродо подтянулся 15 раз.
9 января Фродо подтянулся 21 раз.
Это различные члены арифметической прогрессии.
an = a1 + d(n - 1) - формула находжения аn члена.
а6 = а1 + d(6-1),
a9 = a1 + d(9-1)
Но а6 = 15
а9 = 21
{ 15 = а1 + d(6-1)
{ 21 = a1 + d(9-1)
{ 15 = a1 + 5d
{ 21 = a1 + 8d
{ a1 = 15 - 5d
{ a1 = 21 - 8d
15 - 5d = 21 - 8d
8d - 5d = 21 - 15
3d = 6
d = 6 : d
d = 2 - разность прогрессии, и, соответственно, количество подтягиваний, на которое Фродо ежедневно увеличивал нагрузку.
Подставим d = 2 в любое уравнение, например,
15 = а1 + d(6-1)
15 = а1 + 2(6-1)
15 = а1 + 2•5
а1 = 15 - 10
а1 = 5 раз Фродо подтянутся 1-го января.