Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
vladrifeyt1
28.03.2023 10:46 •
Математика
Втрапеции авсд основание ад=3а , а вс=а, угол вад=30 градусов,а угол адс=60 гр. проходящая через точку д окружность делит площадь трапеции пополам.найдите отрезок этой прямой,который находится в трапеции,если а=sqrt(39).
Показать ответ
Ответ:
Sveto4ka342
09.07.2020 19:29
Здесь в условии ошибка. Должна быть не окружность, а прямая через D.
Это отрезок DK, длину которого нам надо найти.
Точка К должна находиться на отрезке АВ, потому что отрезок DB явно делит трапецию на такие части, что S(BCD) < S(ABD).
Вот рисунок. Из него ясно, что:
AB = BN/sin 30 = 2*BN = 2h, AN = BN*tg 60 = h√3
DM = CM*tg 30 = h√3/3, CD = DM/sin 30 = 2*DM = 2h√3/3
AD = DM + MN + AN = h√3/3 + a + h√3 = 3a
4h√3/3 = 2a
h = 3a/(2√3) = a√3/2
AB = 2h = a√3
CD = 2h√3/3 = 2a√3/2*√3/3 = a
Угол BCD = 180 - ADC = 180 - 60 = 120
Треугольник BCD - равнобедренный с боковой стороной а и углом 120.
Угол CBD = 30
Из теоремы косинусов
BD^2 = CD^2+BC^2-2*CD*BC*cos 120 = a^2+a^2-2a^2*(-1/2) = 2a^2+a^2 = 3a^2
BD = a√3 = AB.
S(BCD) = 1/2*BC*CD*sin BCD = 1/2*a^2*√3/2 = a^2*√3/4
Угол ABC = 180 - 30 = 150, ABD = ABC - CBD = 150 - 30 = 120.
Треугольник ABD - равнобедренный с боковой стороной а√3 и углом 120.
S(ABD) = 1/2*AB*BD*sin ABD = 1/2*a√3*a√3*√3/2 = 3a^2*√3/4 = 3*S(BCD)
Площадь всей трапеции
S(ABCD) = (3a + a)*h/2 = 4a*(a√3/2)/2 = a^2*√3
Значит, S(AKD) = S(KBCD) = a^2*√3/2 = 2*S(BCD)
То есть S(BKD) = S(BCD)
S(BKD) = 1/2*KB*BD*sin KBD = 1/2*KB*a√3*sin 120 = a^2*√3/4
KB*a√3/2*√3/2 = a^2*√3/4
KB = a/√3 = a√3/3
Из теоремы косинусов
DK^2 = BD^2 + KB^2 - 2*BD*KB*cos 120 = 3a^2 + a^2/3 - 2*a√3*(a√3/3)(-1/2) =
= 3a^2 + a^2/3 + a^2 = 13a^2/3
DK = a*√(13/3) = √39*√(13/3) = √(13*3*13/3) = 13
0,0
(0 оценок)
Популярные вопросы: Математика
pukishandpapish
31.01.2020 13:55
1. Решите уравнение: |х + 3,6|= 2,7 У НАС СЕЙЧАС СОРР...
LidaDay
14.02.2023 16:36
сор по математике за 6 класс 1 вариант дом ...
ketrinmaknamar
23.08.2022 04:51
На склад в первый день привезли 4, 5т. картофеля, во второй – на 2,1 т. больше. Сколько всего картофеля привезли на склад ЭТО СОР КТО ВАШИ...
qhahz
28.09.2020 10:55
Впартии из 100 бурильных труб содержится 5% бракованных. какова вероятность, что среди выбранных наудачу 10 труб окажется 2 бракованных?...
indira227
15.09.2021 00:44
Элементы линейной агрохолдинг производит четыре вида молочной продукции. объёмы выпуска (в ед. массы) заданы матрицей а, а цена реализации единицы продукции i-го вида...
СиэльФантом
10.01.2020 21:12
Миша считал по 25 до 200 ,а егор считал по50 до 250 . напишите числа,которые назвали миша и егор...
Zhenya2188
18.03.2020 15:13
дан прямоугольный параллелепипед abcda1b1c1d1. его диагональ b1d составляет с ребром ad угол 45 градусов, а с ребром dc угол 60 градусов.найдите угол между bd1 и dd1....
ЗагрединоваЖанель09
04.10.2020 20:42
Даны матрицы а и в найти а-в, в-а, 2ат-в...
sasyli333
02.12.2020 12:39
Во сколько раз 1 меньше 10? ,во сколько 10 меньше 100? ,во сколько 100 больше 10? ...
nogtev70
21.03.2023 20:29
1) произведение чисел 3 и 8 уменьши в 4 раза.2)частное чисел 27 и 3 увеличь в 5 раз.3) сумма чисел 48 и 15 уменьши в 9 раз .4) сумму чисел 81 и 9 уменьши в 10 раз.5)...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
Это отрезок DK, длину которого нам надо найти.
Точка К должна находиться на отрезке АВ, потому что отрезок DB явно делит трапецию на такие части, что S(BCD) < S(ABD).
Вот рисунок. Из него ясно, что:
AB = BN/sin 30 = 2*BN = 2h, AN = BN*tg 60 = h√3
DM = CM*tg 30 = h√3/3, CD = DM/sin 30 = 2*DM = 2h√3/3
AD = DM + MN + AN = h√3/3 + a + h√3 = 3a
4h√3/3 = 2a
h = 3a/(2√3) = a√3/2
AB = 2h = a√3
CD = 2h√3/3 = 2a√3/2*√3/3 = a
Угол BCD = 180 - ADC = 180 - 60 = 120
Треугольник BCD - равнобедренный с боковой стороной а и углом 120.
Угол CBD = 30
Из теоремы косинусов
BD^2 = CD^2+BC^2-2*CD*BC*cos 120 = a^2+a^2-2a^2*(-1/2) = 2a^2+a^2 = 3a^2
BD = a√3 = AB.
S(BCD) = 1/2*BC*CD*sin BCD = 1/2*a^2*√3/2 = a^2*√3/4
Угол ABC = 180 - 30 = 150, ABD = ABC - CBD = 150 - 30 = 120.
Треугольник ABD - равнобедренный с боковой стороной а√3 и углом 120.
S(ABD) = 1/2*AB*BD*sin ABD = 1/2*a√3*a√3*√3/2 = 3a^2*√3/4 = 3*S(BCD)
Площадь всей трапеции
S(ABCD) = (3a + a)*h/2 = 4a*(a√3/2)/2 = a^2*√3
Значит, S(AKD) = S(KBCD) = a^2*√3/2 = 2*S(BCD)
То есть S(BKD) = S(BCD)
S(BKD) = 1/2*KB*BD*sin KBD = 1/2*KB*a√3*sin 120 = a^2*√3/4
KB*a√3/2*√3/2 = a^2*√3/4
KB = a/√3 = a√3/3
Из теоремы косинусов
DK^2 = BD^2 + KB^2 - 2*BD*KB*cos 120 = 3a^2 + a^2/3 - 2*a√3*(a√3/3)(-1/2) =
= 3a^2 + a^2/3 + a^2 = 13a^2/3
DK = a*√(13/3) = √39*√(13/3) = √(13*3*13/3) = 13