Ввыпуклом четырехугольникe abcd углы при вершинах a, b , c равны 82 градусов . на стороне ab отмечена точка е . известно, что ad=cd=be . найдите угол bce. обоснуйте решение
1) у=3+2х-x²; производная: y ' = 2-2x; 2-2x=0; x = 1; y(1)=3+2*1-1² = 4; Функция не является монотонной. Одна точка экстремума: x = 1; у=4; производная в этой точке меняет знак с + на - ; это точка максимума функции. Функция возрастающая на интервале x є (-∞;1). Функция убывающая на интервале x є (1; +∞). строим график: пересечение с осью OY: 3+2х-x²=0; x1=-1; x2=3; строим по точкам: x= -2; y= -5; x= -1; y= 0; x= 0; y= 3; x= 1; y= 4; x= 2; y= 3; x= 3; y= 0; x= 4; y= -5;
2) у=3х²-x³; производная: y ' = 6x -3x²; 6x -3x²=0; x1 = 0; x2 = 2; y(0)= 3х²-x³ = 0; y(2)= 3*2²-2³ = 4; Функция не является монотонной. Две точки экстремума: (0; 0) производная в этой точке меняет знак с - на + ; это точка локального минимума функции; и (2; 4) производная в этой точке меняет знак с + на - ; это точка локального максимума функции. Функция убывающая на интервале x є (-∞; 0) U (2; +∞). Функция возрастающая на интервале x є (0; 2). строим график: пересечение с осью OY: 3х²-x³=0; x1=0; x2=3; строим по точкам: x= -1; y= 4; x= 0; y= 0; x= 1; y= 2; x= 2; y= 4; x= 3; y= 0;
3) у=6х+x³; производная: y ' = 3x²+6; 3x²+6 = 0; Нет корней. производная всегда больше нуля. Функция является монотонной. Функция возрастающая на интервале x є (-∞; +∞). строим график: пересечение с осью OY: 6х+x³=0; x=0; строим по точкам: x= -1; y= -7; x= -0.75; y= -4.92; x= -0.5; y= -3.13; x= -0.25; y= -1.52; x= 0; y= 0; x= 0.25; y= 1.52; x= 0.5; y= 3.13; x= 0.75; y= 4.92; x= 1; y= 7;
30; 41; 52; 63; 74; 85; 96 - числа, в которых число десятков на 3 больше, чем единиц (всего 7 вариантов) Т.е. 30 : 3 - число десятков, 0 - число единиц ⇒ 3 - 0 = 3 41: 4 - число десятков, 1 - число единиц ⇒ 4 - 1 = 3 52 : 5 - число десятков, 2 - число единиц ⇒ 5 - 2 = 3 и т.д.
21: 42; 63; 84 - числа, в которых число единиц в 2 раза меньше числа десятков (всего 4 варианта). Т.е. 21: 2 - число десятков, 1 - число единиц ⇒ 2 : 1 = 2 раза 42: 4 - число десятков, 2 - число единиц ⇒ 4 : 2 = 2 и т.д.
15; 24; 33; 42; 51; 60 - числа, в которых числа единиц и десятков в сумме равна 6 (всего 6 вариантов). Т.е. 15: 1 + 5 = 6 24: 2 + 4 = 6 33: 3 + 3 = 6 42: 4 + 2 = 6 и т.д.
у=3+2х-x²;
производная:
y ' = 2-2x;
2-2x=0; x = 1;
y(1)=3+2*1-1² = 4;
Функция не является монотонной.
Одна точка экстремума: x = 1; у=4; производная в этой точке меняет знак с + на - ; это точка максимума функции.
Функция возрастающая на интервале x є (-∞;1).
Функция убывающая на интервале x є (1; +∞).
строим график:
пересечение с осью OY:
3+2х-x²=0;
x1=-1; x2=3;
строим по точкам:
x= -2; y= -5;
x= -1; y= 0;
x= 0; y= 3;
x= 1; y= 4;
x= 2; y= 3;
x= 3; y= 0;
x= 4; y= -5;
2)
у=3х²-x³;
производная:
y ' = 6x -3x²;
6x -3x²=0; x1 = 0; x2 = 2;
y(0)= 3х²-x³ = 0; y(2)= 3*2²-2³ = 4;
Функция не является монотонной.
Две точки экстремума:
(0; 0) производная в этой точке меняет знак с - на + ; это точка локального минимума функции;
и (2; 4) производная в этой точке меняет знак с + на - ; это точка локального максимума функции.
Функция убывающая на интервале x є (-∞; 0) U (2; +∞).
Функция возрастающая на интервале x є (0; 2).
строим график:
пересечение с осью OY:
3х²-x³=0;
x1=0; x2=3;
строим по точкам:
x= -1; y= 4;
x= 0; y= 0;
x= 1; y= 2;
x= 2; y= 4;
x= 3; y= 0;
3)
у=6х+x³;
производная:
y ' = 3x²+6;
3x²+6 = 0; Нет корней.
производная всегда больше нуля.
Функция является монотонной.
Функция возрастающая на интервале x є (-∞; +∞).
строим график:
пересечение с осью OY:
6х+x³=0;
x=0;
строим по точкам:
x= -1; y= -7;
x= -0.75; y= -4.92;
x= -0.5; y= -3.13;
x= -0.25; y= -1.52;
x= 0; y= 0;
x= 0.25; y= 1.52;
x= 0.5; y= 3.13;
x= 0.75; y= 4.92;
x= 1; y= 7;
Т.е. 30 : 3 - число десятков, 0 - число единиц ⇒ 3 - 0 = 3
41: 4 - число десятков, 1 - число единиц ⇒ 4 - 1 = 3
52 : 5 - число десятков, 2 - число единиц ⇒ 5 - 2 = 3
и т.д.
21: 42; 63; 84 - числа, в которых число единиц в 2 раза меньше числа десятков (всего 4 варианта).
Т.е. 21: 2 - число десятков, 1 - число единиц ⇒ 2 : 1 = 2 раза
42: 4 - число десятков, 2 - число единиц ⇒ 4 : 2 = 2
и т.д.
15; 24; 33; 42; 51; 60 - числа, в которых числа единиц и десятков в сумме равна 6 (всего 6 вариантов).
Т.е. 15: 1 + 5 = 6
24: 2 + 4 = 6
33: 3 + 3 = 6
42: 4 + 2 = 6
и т.д.