В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Alinkass93
Alinkass93
17.06.2020 00:44 •  Математика

Вычеслить площадь фигуры ограниченной линиями y=(-x^2)+4x-1; y=-x-1

Показать ответ
Ответ:
Rozeta2003
Rozeta2003
26.08.2020 13:46
Y=-x²+4x-1 это парабола, ветви напр вниз. y=-x-1 - прямая. надонайти точки пересечения.
-x²+4x-1=-x-1
x²-5x=0 => x=0 x=5. то есть точки пересечения (0,-1) и (5,-6). Точки пересечения под осью ОХ. Поэтому надо поднять наши графики на 6 выше. Тогда площадь не изменится и целиком будет выше ОХ.
y=-x-1+6=-x+5
y=-x²+4x-1+6=-x²+4x+5
точки пересечения будут (0,5) и (5,0) 
S=∫₀⁵(-x²+4x+5)dx-∫₀⁵(-x+5)dx=(-x³/3+4x²/2+5x)|₀⁵-(-x²/2+5x)|₀⁵
=-125/3+50+25+25/2-25=\frac{-250+300+75}{6}= \frac{25}{6}
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота