ответ: 10 .
Пошаговое объяснение: Нехай точка D(x ₁ ; y ₁ ; z ₁ ) .
Знайдемо координати т. О - середини діагоналі АС :
x₀= ( 3 + 1 )/2 = 2 ; y₀= ( - 4 + 2 )/2 = - 1 ; z₀ = ( 7 - 3 )/2 = 2 ; точка О(2;- 1 ; 2) .
Точка О є серединою й другої діагоналі BD паралелограма , тому :
( x ₁ - 5 )/2 = 2 ; x ₁ - 5 = 4 ; x₁ = 9 ;
( y ₁ + 3 )/2 = - 1 ; y ₁ + 3 = - 2 ; y ₁ = - 5 ;
( z ₁ - 2 )/2 = 2 ; z ₁ - 2 = 4 ; z ₁ = 6 ; D( 9 ; - 5 ; 6 ) .
Знайдемо суму коорд . точки D : 9 - 5 + 6 = 10 .
Пошаговое объяснение:
1) определим уравнение касательной проведенной к графику данной функции в точке с абциссой x₀=2 по формуле y=y₀+y'(x₀)(x-x₀)
y₀=y(2)=2*2-2²=4-4=0 ; y'=2-2x ; y'(2)=2-4=-2
y=-2(x-2)=-2x+4 ; y=-2x+4
2) найдем точки пересечения графиков y=-2x+4 и y=2x-x²
-2x+4=2x-x²
x²-2x+4-2x=0
x²-4x+4=0
(x-2)²=0
x=2
(2;0)
3) найдем точки пересечения графика y=2x-x² с ОХ
y=2x-x²=0
х(2-х)=0
x₁=0 ; x₂=2
4) найдем точкy пересечения графика y=-2x+4 с ОУ
х=0 ; y=-2x+4=-2*0+4=4
(0;4)
5) схематически построим графики y=-2x+4 и y=2x-x²
6) площадь фигуры ограниченной линиями y=2x-x^2 и касательной проведенной к графику данной функции в точке с абциссой x=2 и с осью ординат
S=SΔOAB-SкриволинейногоΔOCB=
2 2 2
= (OA*OB/2)-∫(2x-x²)dx=(4*2/2)-[(2x²/2)-(x³/3)]=4-[x²-(x³/3)]=
0 0 0
=4-[2²-(2³/3)]=4-[4-(8/3)]=4-4+8/3=8/3=2 2/3
ответ: 10 .
Пошаговое объяснение: Нехай точка D(x ₁ ; y ₁ ; z ₁ ) .
Знайдемо координати т. О - середини діагоналі АС :
x₀= ( 3 + 1 )/2 = 2 ; y₀= ( - 4 + 2 )/2 = - 1 ; z₀ = ( 7 - 3 )/2 = 2 ; точка О(2;- 1 ; 2) .
Точка О є серединою й другої діагоналі BD паралелограма , тому :
( x ₁ - 5 )/2 = 2 ; x ₁ - 5 = 4 ; x₁ = 9 ;
( y ₁ + 3 )/2 = - 1 ; y ₁ + 3 = - 2 ; y ₁ = - 5 ;
( z ₁ - 2 )/2 = 2 ; z ₁ - 2 = 4 ; z ₁ = 6 ; D( 9 ; - 5 ; 6 ) .
Знайдемо суму коорд . точки D : 9 - 5 + 6 = 10 .
Пошаговое объяснение:
1) определим уравнение касательной проведенной к графику данной функции в точке с абциссой x₀=2 по формуле y=y₀+y'(x₀)(x-x₀)
y₀=y(2)=2*2-2²=4-4=0 ; y'=2-2x ; y'(2)=2-4=-2
y=-2(x-2)=-2x+4 ; y=-2x+4
2) найдем точки пересечения графиков y=-2x+4 и y=2x-x²
-2x+4=2x-x²
x²-2x+4-2x=0
x²-4x+4=0
(x-2)²=0
x=2
(2;0)
3) найдем точки пересечения графика y=2x-x² с ОХ
y=2x-x²=0
х(2-х)=0
x₁=0 ; x₂=2
4) найдем точкy пересечения графика y=-2x+4 с ОУ
х=0 ; y=-2x+4=-2*0+4=4
(0;4)
5) схематически построим графики y=-2x+4 и y=2x-x²
6) площадь фигуры ограниченной линиями y=2x-x^2 и касательной проведенной к графику данной функции в точке с абциссой x=2 и с осью ординат
S=SΔOAB-SкриволинейногоΔOCB=
2 2 2
= (OA*OB/2)-∫(2x-x²)dx=(4*2/2)-[(2x²/2)-(x³/3)]=4-[x²-(x³/3)]=
0 0 0
=4-[2²-(2³/3)]=4-[4-(8/3)]=4-4+8/3=8/3=2 2/3