а) Первая цифра в скобках - это значение по оси x , вторая цифра - значение по оси y
Таким образом отмечаем на координатной прямой точки T, P, S
б) Поскольку TPSM - прямоугольник, то его противоположные стороны равны
Проводим от точки T линию вниз параллельно прямой PS , а от точки S линию влево параллельно прямой TP и на пересечении этих линий будут точка M с координатами ( -2 ; -1 )
в) TS и PM - диагонали прямоугольника TPSM, их пересечение -это середина прямоугольника.
Проведя диагонали мы находим точку A с координатами ( 2,5 ; 1 ) на пересечении этих самых диагоналей
Классическое определение гласит, что “два выражения, значения которых равны при любых значениях переменных, называются тождественно равными, а тождество – это равенство, верное при любых значениях переменных”. Исходя из этого определения, в приведенных выражениях определены такие тождества: 1) ab + 3c = 6) 3c + ab ( перестановка слагаемых); 2) a - b - c = 5) -1(b + c - a) = a - b - c (после раскрытия скобок); 3) 8(a + b - c) = 7) 8a + 8b - 8c = 8(a + b - c) (после вынесения за скобки общего множителя); 4) 1/4a * 4/5b * 5/6c = 8) 1/6 * a * b * c (после сокращения дробей).
а) Первая цифра в скобках - это значение по оси x , вторая цифра - значение по оси y
Таким образом отмечаем на координатной прямой точки T, P, S
б) Поскольку TPSM - прямоугольник, то его противоположные стороны равны
Проводим от точки T линию вниз параллельно прямой PS , а от точки S линию влево параллельно прямой TP и на пересечении этих линий будут точка M с координатами ( -2 ; -1 )
в) TS и PM - диагонали прямоугольника TPSM, их пересечение -это середина прямоугольника.
Проведя диагонали мы находим точку A с координатами ( 2,5 ; 1 ) на пересечении этих самых диагоналей
1) ab + 3c = 6) 3c + ab ( перестановка слагаемых);
2) a - b - c = 5) -1(b + c - a) = a - b - c (после раскрытия скобок);
3) 8(a + b - c) = 7) 8a + 8b - 8c = 8(a + b - c) (после вынесения за скобки общего множителя);
4) 1/4a * 4/5b * 5/6c = 8) 1/6 * a * b * c (после сокращения дробей).