Во второй день заасфальтировали половину оставшейся дороги. После этого на третий день осталось заасфальтировать 750 км. Значит во второй день заасфальтировали то же 750 км. (после первого дня получается осталось заасфальтировать 1500 км; во 2 день заасфальтировали половину оставшегося 1500:2=750 км и на 3 день оставшиеся 750 км). После первого дня осталось заасфальтировать 3/4 части дороги (1-1/4=3/4). Три части из четырёх составляет 1500 км. На одну часть приходится 1500:3=500 км Всего частей - четыре. Значит: длина дороги равна: 4*500=2000 км
После этого на третий день осталось заасфальтировать 750 км.
Значит во второй день заасфальтировали то же 750 км.
(после первого дня получается осталось заасфальтировать 1500 км;
во 2 день заасфальтировали половину оставшегося 1500:2=750 км и на 3 день оставшиеся 750 км).
После первого дня осталось заасфальтировать 3/4 части дороги (1-1/4=3/4).
Три части из четырёх составляет 1500 км. На одну часть приходится 1500:3=500 км
Всего частей - четыре. Значит: длина дороги равна: 4*500=2000 км
ответ: 125/6 = 20 5/6 кв. ед.
Пошаговое объяснение:
Найдите площадь фигуры ограниченной линиями
y=5x+x^2+2, y=2.
Строим графики функций (См. скриншот).
Площадь S=S(AmB) - S(AnB).
По формуле Ньютона-Лейбница
S=∫ₐᵇf(x)dx=F(x)|ₐᵇ = F(b)-F(a).
Пределы интегрирования (См. скриншот) a= -5; b=0. Тогда
S=∫₋₅⁰2dx - ∫₋₅⁰(5x+x^2+2)dx = 125/6 = 20 5/6 кв. ед.
1) ∫₋₅⁰2dx=2∫₋₅⁰dx = 2x|₋₅⁰ = 2(0-(-5))=10;
2) ∫₋₅⁰(5x+x^2+2)dx = 5∫₋₅⁰xdx + ∫₋₅⁰x²dx + 2∫₋₅⁰dx =
= 5(x²/2)|₋₅⁰+x³/3|₋₅⁰ + 2(x)|₋₅⁰ = 5/2(0²-(-5)²) + 1/3(0³-(-5)³) + 2(0-(-5)) =
=5/2*(-25) + 1/3*125 +2*5 = -65/6
3) 5-(-65/6) = 10+65/6 = 125/6 = 20 5/6 кв. ед.