Так как одно из боковых ребер перпендикулярно к плоскости основания, то 2 боковые грани вертикальны. Остальные 2 наклонены под углом 45 градусов. Если обозначить сторону основания за а, то высота пирамиды будет равна тоже а. Наибольшее боковое ребро равно 12 см - можно составить уравнение как для гипотенузы: а² + (а√2)² = 12² а² + 2а² = 144 3а² = 144 а = √(144/3) = √48 = 4√3 см. Отсюда ответ на 1 вопрос Н = 4√3 см. Боковая поверхность состоит из 4 прямоугольных треугольников: 2 из них имеют катеты по а, 2 - один катет равен а, второй а√2 как гипотенуза первых граней. Тогда Sбок = 2*(1/2)а² + 2*а*(1/2)(а√2) = а² + а²√2 = а²(1+√2) см².
Можно использовать до 4 нечетных чисел ,тогда в любом случае будет хотя бы 1 четный множитель в этом случае произведение будет четным. Чтобы сумма была положительной необходимо чтобы нечетных множителей было четное количество,тк каждое нечетное число равно 2k-1 и отделы четные 2k и единички,тогда единичек должно быть четное число,как и нечетных чисел.n-четное число больше n-нечетного числа,тогда чтобы сумма была минимальной нужно использовать как можно больше нечетных слагаемых и самых маленьких из всех тогда наибольшее число нечетных чисел которые можно использовать равно 3 тк это ближайшее к 4 нечетное число.далее берем как можно меньшие нат числа Искомая сумма 1+3+5+2+4+6+8+10=39
основания, то 2 боковые грани вертикальны. Остальные 2 наклонены под углом 45 градусов.
Если обозначить сторону основания за а, то высота пирамиды будет равна тоже а.
Наибольшее боковое ребро равно 12 см - можно составить уравнение как для гипотенузы:
а² + (а√2)² = 12²
а² + 2а² = 144
3а² = 144
а = √(144/3) = √48 = 4√3 см.
Отсюда ответ на 1 вопрос Н = 4√3 см.
Боковая поверхность состоит из 4 прямоугольных треугольников:
2 из них имеют катеты по а,
2 - один катет равен а, второй а√2 как гипотенуза первых граней.
Тогда Sбок = 2*(1/2)а² + 2*а*(1/2)(а√2) = а² + а²√2 = а²(1+√2) см².
Искомая сумма 1+3+5+2+4+6+8+10=39