а) Первый Пусть из некоторого города A нельзя попасть в некоторый город B по железной дороге. Рассмотрим множество M всех городов, в которые можно попасть из города A по железной дороге. Множество городов, не входящих в M, обозначим N. Множество N непусто, поскольку в нём содержится город B. Ясно, что из городов множества M нельзя попасть в города множества N по железной дороге.
Докажем, что из каждого города в любой другой можно попасть авиарейсами.
Если один из городов принадлежит M, а другой – множеству N, то между ними есть прямая авиалиния.
Пусть два города принадлежат M. Тогда из первого города можно попасть авиарейсом в некоторый город множества N, а оттуда (также самолётом) – во второй город.
Аналогично рассматривается случай, когда оба города принадлежат N.
Второй См. г).
б) См. в).
в) Пусть для города X это не так: есть город A, в который из X нельзя долететь за два "хода", и город B, в который из X нельзя доехать на поезде за два "хода" (значит, X и B связаны авиалинией). Пусть A и B связаны авиалинией. Тогда в X из A в можно добраться по воздуху с пересадкой в B. Противоречие.
Аналогично к противоречию приводит и предположение о том, что A и B связаны железной дорогой.
г) Пусть из A в нельзя долететь за три "хода", а из C в D нельзя доехать на поезде за три "хода". Тогда A и B связаны железной дорогой, а C и D – авиалинией.
Пусть A и C связаны железной дорогой. Тогда B и D связаны авиалинией (иначе был бы ж/д маршрут CABD), а A и D – железной дорогой (иначе есть авиамаршрут BDA). Противоречие: есть ж/д маршрут CAD.
Аналогично к противоречию приводит и предположение о том, что A и C связаны авиалинией.
ИССЛЕДОВАНИЕ. 1. Область определения - х≠0 или Х∈(-∞,0)∪(0,+∞) 2.Пересечение с осью Х. Y(x)= 0. Х= 1. 3. Поведение в близи точки разрыва. lim(0) = +∞. 4. Поведение на бесконечности lim(-∞) = 1. lim(+∞) = 1. 5. Асимптота Y=1. 6. Исследование на четность.
Функция ни четная ни нечетная. 7. Производная функции
Точка экстремума - Х=1. Возрастает - Х∈(-∞,0)∪[1,+∞) Убывает - X∈(0,1]. 8 Минимальное значение Ymin= 0. Максимальное значение Ymax = +∞ 9. Графики прилагаются. Обратить на поведение в интервале от 0 до+1
Пошаговое объяснение:
а) Первый Пусть из некоторого города A нельзя попасть в некоторый город B по железной дороге. Рассмотрим множество M всех городов, в которые можно попасть из города A по железной дороге. Множество городов, не входящих в M, обозначим N. Множество N непусто, поскольку в нём содержится город B. Ясно, что из городов множества M нельзя попасть в города множества N по железной дороге.
Докажем, что из каждого города в любой другой можно попасть авиарейсами.
Если один из городов принадлежит M, а другой – множеству N, то между ними есть прямая авиалиния.
Пусть два города принадлежат M. Тогда из первого города можно попасть авиарейсом в некоторый город множества N, а оттуда (также самолётом) – во второй город.
Аналогично рассматривается случай, когда оба города принадлежат N.
Второй См. г).
б) См. в).
в) Пусть для города X это не так: есть город A, в который из X нельзя долететь за два "хода", и город B, в который из X нельзя доехать на поезде за два "хода" (значит, X и B связаны авиалинией). Пусть A и B связаны авиалинией. Тогда в X из A в можно добраться по воздуху с пересадкой в B. Противоречие.
Аналогично к противоречию приводит и предположение о том, что A и B связаны железной дорогой.
г) Пусть из A в нельзя долететь за три "хода", а из C в D нельзя доехать на поезде за три "хода". Тогда A и B связаны железной дорогой, а C и D – авиалинией.
Пусть A и C связаны железной дорогой. Тогда B и D связаны авиалинией (иначе был бы ж/д маршрут CABD), а A и D – железной дорогой (иначе есть авиамаршрут BDA). Противоречие: есть ж/д маршрут CAD.
Аналогично к противоречию приводит и предположение о том, что A и C связаны авиалинией.
ИССЛЕДОВАНИЕ.
1. Область определения - х≠0 или
Х∈(-∞,0)∪(0,+∞)
2.Пересечение с осью Х. Y(x)= 0.
Х= 1.
3. Поведение в близи точки разрыва.
lim(0) = +∞.
4. Поведение на бесконечности
lim(-∞) = 1.
lim(+∞) = 1.
5. Асимптота Y=1.
6. Исследование на четность.
Функция ни четная ни нечетная.
7. Производная функции
Точка экстремума - Х=1.
Возрастает - Х∈(-∞,0)∪[1,+∞)
Убывает - X∈(0,1].
8 Минимальное значение
Ymin= 0.
Максимальное значение
Ymax = +∞
9. Графики прилагаются. Обратить на поведение в интервале от 0 до+1