В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Demonis666
Demonis666
15.08.2022 21:58 •  Математика

Вычислить объем тела, образованного вращениемвокруг оси оy фигуры, ограниченной графикамифункций . y = x^3 y=x^2

Показать ответ
Ответ:
Diana2004250
Diana2004250
09.06.2020 01:04

ответ: π/12 единиц кубических.

Пошаговое объяснение:

Построим графики (рисунок 1).

Так как полученная фигура крутиться вокруг оси оу, выведем x из уравнений кривых:

y=x^{2} = x=\sqrt[2]{y} \\y=x^{3} = x=\sqrt[3]{y}

Теперь найдём объём тела вращения. Делаем следующее:

1) Так как график x=\sqrt[3]{y} правее чем x=\sqrt{y}, то в интеграле отнимем правый график от левого графика.

2) Так как график по оси оу находиться в диапазоне [0; 1], то и пределы интегрирования будут соответствующие.

3) По формуле V = \pi \int\limits^a_b {x^{2}(y)} \, dy найдём объём, учитывая, что надо отнять правый график функции от левого.

Эти шаги видно в рисунке 2.


Вычислить объем тела, образованного вращениемвокруг оси оy фигуры, ограниченной графикамифункций . y
Вычислить объем тела, образованного вращениемвокруг оси оy фигуры, ограниченной графикамифункций . y
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота