1) Так как призма правильня, то в основании лежит квадрат. АВСДА1В1С1Д1-данная призма. Из треугольника В1А1Д-прямоугольный, против угла в 30 градусов лежит кактет в 2 раза иеньше гиптенузы, следовательно сторона основания равна 2. Тогда, находим из треугольника ВСД по т. Пифагора ВД=корень из (4+4)=2корня из2
Из треугольника В1ВД находим ВВ1=корень из (16-8)=2корня из2
Тогда:
V=2*2*2корня из 2= 8корней из2
Радиус описанного около этой призмы цилиндра R=0.5BД=корень из2
ответ:
пошаговое объяснение:
1) найдем координаты векторов ав и cd.
чтобы найти координаты вектора, нужно найти разность соответствующих координат точки конца вектора и начала.
найдем координаты вектора ав:
ав (хв – ха; ув – уа; zв – zа);
ав (-3 – 1; 3 – (-5); -4 – 0);
ав (-4; 8; -4).
найдем координаты вектора сd:
cd (хd – хc; уd – уc; zd – zc);
cd (-5 – (-1); 6 – 4; 2 – 0);
cd (-4; 2; 2).
2) скалярное произведение векторов:
ав * cd = -4 * (-4) + 8 * 2 + (-4) * 2 = 16 + 16 – 8 = 24
3) найдем длины векторов ав и cd.
квадрат длины вектора равен сумме квадратов его координат.
найдем длину вектора ав:
|ав|2 = (-4)2 + 82 + (-4)2 = 16 + 64 + 16 = 96;
|ав| = √96.
найдем длину вектора сd:
|cd|2 = (-4)2 + 22 + 22 = 16 + 4 + 4 = 24;
|cd| = √24.
4) найдем угол между векторами:
cos a = ав * cd / (|ав| *|cd|) = 24 / (√96 * √24) = 24 / 48 = ½
а = 600.
ответ: 600.
1) Так как призма правильня, то в основании лежит квадрат. АВСДА1В1С1Д1-данная призма. Из треугольника В1А1Д-прямоугольный, против угла в 30 градусов лежит кактет в 2 раза иеньше гиптенузы, следовательно сторона основания равна 2. Тогда, находим из треугольника ВСД по т. Пифагора ВД=корень из (4+4)=2корня из2
Из треугольника В1ВД находим ВВ1=корень из (16-8)=2корня из2
Тогда:
V=2*2*2корня из 2= 8корней из2
Радиус описанного около этой призмы цилиндра R=0.5BД=корень из2
Тогда его объем равен:
V=piR^2*BB1=4*pi*корень из2