В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
AbraevAidar
AbraevAidar
28.07.2022 14:24 •  Математика

Вычислить площадь фигуры ограниченной линиями y=9-x^2 y=3-x

Показать ответ
Ответ:
Марк0808
Марк0808
07.10.2020 17:19
ДАНО
Y = 9 - x²
Y = 3 - x
НАЙТИ
S=? - площадь.
РЕШЕНИЕ
Пределы интегрирования -  разность функций равна 0.
3-x - (9-x²) = - 6 - x + x² = 0
Корни уравнения: b = - 2 , a = 3.
Площадь фигуры - интеграл разности функции.
S= \int\limits^3_b {(-6-x+x^2)} \, dx= \frac{-6x}{1}- \frac{x^2}{2}+ \frac{x^3}{3}
Вычисляем при а=3 
S(3) = 12 - 2 - 2 2/3 = 7 1/3,
а теперь при b = -2.
S(-2) = -18 - 4.5 - 9 = - 13.5
И разность значений.
S = S(3) - S(-2) = 7 1/3 + 13 1/2 = 20 5/6  ≈ 20.833 - площадь - ОТВЕТ

Вычислить площадь фигуры ограниченной линиями y=9-x^2 y=3-x
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота