В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
0101015
0101015
08.05.2022 23:55 •  Математика

Вычислить площадь фигуры ограниченной параболой у=х2+3х-2 у=х-2

Показать ответ
Ответ:
leraleralera13
leraleralera13
04.10.2020 06:22
Точки пересечения P_1, P_2:
x - 2 = x^2 + 3x - 2 \Rightarrow x^2 + 2x = 0 \Rightarrow P_2 = 0, P_1 = -2
y(P_2) = -2, y(P_1) = -4.
Найдем площади фигур, образованных графиками этих функций и y=0:
Площадь над параболой A_1 = \|\int_{P_1}^{P_2}{(x^2+3x-2)dx}\| = \|\big[x^3/3 + 3x^2/2 - 2x\big]_{P_1}^{P_2}\|
= \|-(-8/3 + 6 + 4)\| = \frac{22}{3}
Площадь над прямой
A_2 = \|\int_{P_1}^{P_2}(x-2)dx\|=\|\big[x^2/2 - 2x\big]_{P_1}^{P_2}\| = \|-(4/2+4)\| = 6
Так как парабола находится полностью под прямой на интервале (-2,0), то площадь фигуры, ограниченной параболой и прямой равна A_1 - A_2 = \frac{22 - 18}{3} = \frac{4}{3}
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота