Рассмотрим только кратчайшие пути. Пусть паук сидит в А1, а муха в С. Если паук пройдет по ребру A1A, то у него будет 3 пути: ADC, ABC, AC. Тоже самое, если он пройдет по ребру A1B1 или A1D1. По 3 на каждую. Всего 3*3 = 9 путей. Если он пройдет сначала по диагонали A1D, то у него будет 5 путей: DC, DAC, DBC, DC1C, DD1C. И также на каждой из 3 диагоналей. Всего 3*5 = 15 путей. Итак, получается всего 9 + 15 = 24 кратчайших путей. Есть и более длинные пути, например, A1ABB1C1C или A1DD1B1C. Таких путей очень много, я даже не знаю, как их все пересчитать.
Биномиальным называют распределение количества «успехов» в последовательности из n независимых случайных экспериментов, таких, что вероятность «успеха» в каждом из них постоянна и равна p.
Иначе говоря, пусть происходит n независимых испытаний, в каждом из которых событие может появится с одной и той же вероятностью p. Тогда случайная величина X - количество испытаний, в которых появилось событие, имеет биномиальное распределение вероятностей.
Она может принимать целые значения от 0 (событие не произошло ни разу) до n (событие произошло во всех испытаниях). Формула для вычисления соответствующих вероятностей - уже известная нам формула Бернулли для схемы повторных независимых испытаний:
P(X=k)=Ckn⋅pk⋅(1−p)n−k,k=0,1,2,...,n.
Для биномиального распределения известны готовые формулы для математического ожидания и дисперсии:
Если паук пройдет по ребру A1A, то у него будет 3 пути: ADC, ABC, AC.
Тоже самое, если он пройдет по ребру A1B1 или A1D1. По 3 на каждую.
Всего 3*3 = 9 путей.
Если он пройдет сначала по диагонали A1D, то у него будет 5 путей:
DC, DAC, DBC, DC1C, DD1C.
И также на каждой из 3 диагоналей. Всего 3*5 = 15 путей.
Итак, получается всего 9 + 15 = 24 кратчайших путей.
Есть и более длинные пути, например, A1ABB1C1C или A1DD1B1C.
Таких путей очень много, я даже не знаю, как их все пересчитать.
Биномиальным называют распределение количества «успехов» в последовательности из n независимых случайных экспериментов, таких, что вероятность «успеха» в каждом из них постоянна и равна p.
Иначе говоря, пусть происходит n независимых испытаний, в каждом из которых событие может появится с одной и той же вероятностью p. Тогда случайная величина X - количество испытаний, в которых появилось событие, имеет биномиальное распределение вероятностей.
Она может принимать целые значения от 0 (событие не произошло ни разу) до n (событие произошло во всех испытаниях). Формула для вычисления соответствующих вероятностей - уже известная нам формула Бернулли для схемы повторных независимых испытаний:
P(X=k)=Ckn⋅pk⋅(1−p)n−k,k=0,1,2,...,n.
Для биномиального распределения известны готовые формулы для математического ожидания и дисперсии:
M(X)=np,D(X)=npq,σ(X)=npq−−−√.
Пошаговое объяснение: