1)Возьмем из этих цифр несколько первых, напр, цифры 1,41, а остальные отбросим. Тогда мы получим приближенное значение числа α, причем это значение будет с недостатком, так как 1,41 < α. 2)То же, что излишек. Избытки запасов. 3) π ≈ 3,1415 вот это и есть приближонное значение т.е не целое. 4)≈ 5) 6) Натуральный ряд чисел конструируется на основе начального натурального числа, называемого единицей (обозначение "1") и операции перехода к следующему. Эта операция применима к любому натуральному числу, а ее результат считается натуральным числом, следующим за исходным. Для любого натурального числа существует только одно следующее. Единица является наименьшим натуральным числом, поскольку нет такого натурального числа, для которого она была бы следующим.
Для дифференцирования понадобится несколько формул:
\begin{gathered}\left( f(x) + g(x) \right)' = f'(x) + g'(x)left( n\cdot f(x) \right)' = n\cdot f'(x)left( x^n \right)' = n \cdot x^{x-1}\end{gathered}
(f(x)+g(x))
′
=f
′
(x)+g
′
(x)
(n⋅f(x))
′
=n⋅f
′
(x)
(x
n
)
′
=n⋅x
x−1
Исходное выражение удобно представить в виде:
F(x) = 3 \sqrt[3]{x^2} - x = 3 x^{2/3} - xF(x)=3
3
x
2
−x=3x
2/3
−x
Продифференцировав его, получаем:
\begin{gathered}F'(x) = (3 x^{2/3} - x)' = (3 x^{2/3})' - (x)' = 3 \cdot \dfrac{2}{3} \cdot x^{2/3 - 1} - 1 = 2\cdot x^{-1/3} - 1 = \dfrac{2}{\sqrt[3]{x}} - 1F'(1) = \dfrac{2}{\sqrt[3]{1}} - 1 = 2 - 1 = 1\end{gathered}
F
′
(x)=(3x
2/3
−x)
′
=(3x
2/3
)
′
−(x)
′
=3⋅
3
2
⋅x
2/3−1
−1=2⋅x
−1/3
−1=
3
x
2
−1
F
′
(1)=
3
1
2
−1=2−1=1
2)То же, что излишек. Избытки запасов.
3) π ≈ 3,1415 вот это и есть приближонное значение т.е не целое.
4)≈
5)
6)
Натуральный ряд чисел конструируется на основе начального натурального числа, называемого единицей (обозначение "1") и операции перехода к следующему. Эта операция применима к любому натуральному числу, а ее результат считается натуральным числом, следующим за исходным. Для любого натурального числа существует только одно следующее. Единица является наименьшим натуральным числом, поскольку нет такого натурального числа, для которого она была бы следующим.