В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
theartik1
theartik1
18.10.2020 16:06 •  Математика

Вычислите площадь плоской фигуры,ограниченной линиями y=x² и y=2ₓ+3

Показать ответ
Ответ:
Макоська
Макоська
28.09.2020 15:06
Чертим чертёж. По нему определяем пределы интегрирования - [-1;3], которые также можно найти аналитически, решив уравнение:
x²=2x+3
x²-2x-3=0
D=(-2)²-4*(-3)=16
x=(2-4)/2=-1    x=(2+4)/2=3

По рисунку видно, что график функции y=2x+3 лежит выше графика функции y=x², поэтому площадь фигуры вычисляется по формуле:
s= \int\limits^3_{-1} {(2x+3-x^2)} \, dx=(x^2+3x- \frac{x^3}{3})|_{-1}^3=
=3^2+3*3- \frac{3^3}{3}- (-1)^2-3*(-1)+ \frac{(-1)}{3})=9-1+3- \frac{1}{3}=10 \frac{2}{3} ед².

Вычислите площадь плоской фигуры,ограниченной линиями y=x² и y=2ₓ+3
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота