а) По оси Х - t=2, S(2) = 8 км - через 2 часа - ОТВЕТ
б) Остановка - когда расстояние не изменяется. Находим и вычисляем время.
t2 = 7, t1 = 3
Время остановки - разность координат по оси Х - времени.
Т = 7 - 3 = 4 ч - остановка - ОТВЕТ.
в) Во км от дома.
Находим на оси S значение S= 4 км. Проводим горизонтальную линию параллельно оси времени. Оказалось две точки пересечения с графиком пути. Проводим вертикальные линии и находим время.
ОТВЕТ: Через 1 час - уходил и через 10 часов - возвращался.
РЕШЕНИЕ
Рисунок к задаче в приложении.
а) По оси Х - t=2, S(2) = 8 км - через 2 часа - ОТВЕТ
б) Остановка - когда расстояние не изменяется. Находим и вычисляем время.
t2 = 7, t1 = 3
Время остановки - разность координат по оси Х - времени.
Т = 7 - 3 = 4 ч - остановка - ОТВЕТ.
в) Во км от дома.
Находим на оси S значение S= 4 км. Проводим горизонтальную линию параллельно оси времени. Оказалось две точки пересечения с графиком пути. Проводим вертикальные линии и находим время.
ОТВЕТ: Через 1 час - уходил и через 10 часов - возвращался.
Рисунок с решением задачи в приложении.
Пошаговое объяснение:
1. Наклеим сначала этикетки на дискетки в произвольном порядке.
Предположим, что у нас образовались дубли нескольких различных цветов.
Возьмем по одной дискетке-дублю двух разных цветов и обменяем их этикетки.
После этого каждая из дискеток перестанет быть дублем, так что общее число дублей уменьшится на 2.
Далее будем повторять эту операцию до тех пор, пока дублей различных цветов не останется.
2. Докажем нужный факт индукцией по числу дискеток (при этом можно даже не обращать внимание на соответствие цветов дискеток и этикеток!).
База индукции (одна дискетка) очевидна. Переход: если все k + 1 дискеток одноцветны, то и доказывать нечего.
Если же есть дискетки разных цветов, то возьмем одну из них и наклеим на нее этикетку другого цвета, а для остальных k дискеток применим