В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
олеся788
олеся788
23.09.2020 07:09 •  Математика

Вычислите производную функции f(x)=sin x cos x, в точке x с основнаием 0 = 5/6

Показать ответ
Ответ:
alb123
alb123
17.06.2020 12:21

1 шаг. Находим производную от функции f(x). (производные все табличные; (sinx)' = cosx; (cosx)' = -sinx)
f'(x) = (4sinx - cosx)' = (4sinx)' - (cosx)' = 4cosx + sinx
2 шаг. Находим значение производной в точке x = - п/4
Воспользуемся следующим:
cos(-π/4)=cos(-180/4)=cos(-45)=cos(45)=√2/2
sin(-π/4)=sin(-180/4)=sin(-45)=-sin(45)=-√2/2

Получаем:
f'(-п/4) = 4*cos(-п/4) + sin(-п/4) = 4*√2/2 - √2/2 = (3*√2)/2

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота