Р(Н1) = = 7/15, Р(Н2) = = 1/15, Р(Н3) = = 7/15 (при решении задачи полезно проверить выполнение необходимого условия ).
Если реализовалась гипотеза Н1, то во второй урне оказалось 10 белых и 2 черных шара. Обозначим через А событие, заключающееся в том, что из второй урны выкатился белый шар. Тогда Р(А/Н1) = = 5/33. Если реализовалась гипотеза Н2, то во второй урне оказалось 8 белых и 4 чёрных шара, и Р(А/Н2) = = 4/33. Легко показать, что Р(А/Н3) = = 3/22. Теперь можно воспользоваться формулой полной вероятности:
Р(Н1) = = 7/15, Р(Н2) = = 1/15, Р(Н3) = = 7/15 (при решении задачи полезно проверить выполнение необходимого условия ).
Если реализовалась гипотеза Н1, то во второй урне оказалось 10 белых и 2 черных шара. Обозначим через А событие, заключающееся в том, что из второй урны выкатился белый шар. Тогда Р(А/Н1) = = 5/33. Если реализовалась гипотеза Н2, то во второй урне оказалось 8 белых и 4 чёрных шара, и Р(А/Н2) = = 4/33. Легко показать, что Р(А/Н3) = = 3/22. Теперь можно воспользоваться формулой полной вероятности:
Р(А) = (5/33)(7/15) + (4/33) (1/15) + (3/22) (7/15) = 47/330
Y= x³ - 3x² - 9x + 10
ИССЛЕДОВАНИЕ
1. Область определения - Х∈(-∞;+∞) - непрерывная.
2. Пересечение с осью Х. Y=0 при х1 ≈ 0,917. (х2 ≈-2,42 и х3≈ 4,5 - вне интервала).
3. Пересечение с осью У. У(0) =10.
4. Поведение на бесконечности.limY(-∞) = - ∞ limY(+∞) = +∞
5. Исследование на чётность.Y(-x) = -x³-3x²+9x+10 ≠ Y(x).
Функция ни чётная ни нечётная.
6. Производная функции.Y'(x)= 3x²- 6x-9 = 3*(x²-2x-3) = 3*(x+1)*(x-3)
7. Корни при Х1=-1. Максимум Ymax(-1)= 15,при Х2 = 3, минимум – Ymin(3) = - 17.
Возрастает - Х∈(-∞;-1)∪(3;+∞) , убывает = Х∈(-1;3).
8. Вторая производная - Y"(x) = 6x - 6 = 6*(x-1)
9. Точка перегибаY"(x)=0 при X=1.
Выпуклая “горка» Х∈(-∞;1),Вогнутая – «ложка» Х∈(1;+∞).
10. График в приложении.