Чтобы было понятнее и удобнее различать какое именно число дает остаток , сделаем небольшое различие в символах: Мы имеем: 1 случай: а : 7 = n (ост.2) = n +2/7 ⇒ a = 7n + 2; 2 случай: A : 7 = n(ост.4) = n+ 4/7 ⇒ A = 7n + 4; где n - неполное частное, число натурального ряда. Возведем наши числа в квадрат: а² = (7n + 2)² = 49n² + 28n + 4 = 7n(7n+4) + 4 A² = (7n + 4)² = 49n² + 56n + 16 = 7n(7n+8) + 16 Разделим квадраты чисел на 7: а² : 7 = n(n+4) + 4/7, A²: 7 = n(n+8) + 16/7 = [n(n+8) +2] + 2/7 (так как из неправильной дроби 17 можно выделить целую часть и прибавить ее к неполному частному: 16/7=2ц 2/7) Мы видим, что при делении а² на 7 остаток получается 4, а при делении А² на 7 остаток 2, значит, остаток в первом случае БОЛЬШЕ ( 4/7>2/7) ответ: при делении квадрата числа а на 7 остаток будет больше в случае, когда остаток от деления самого а на 7 меньше, те когда остаток от самого числа будет 2, а не 4. Правильный номер ответа: 1
Я полагаю, что только(x+4) в квадрате, если это так, то: -18/x^2+8x+16-10>= -> (приводим 10 к общему знаменателю с первой половиной) доставляйте сами больше или равно 0, ибо у меня подобные знаки только вас запутают, я вспомню о них в конце -> (-18/x^2+8x+16)-(10x^2+80x+160)/(x^2+8x+16) = (-18-10x^2-80x-160)/x^2+8x+16= (умножаем на -1 для удобства, при это знак меняется) -> 10x^2+80x+178/x^2+8x+16 меньше или равняется нулю. Теперь, ищем дискриминант к знаменателю, этим корням она не будет ровняться, так как делить на ноль в математике нельзя: x^2+8x+16=0 D=b^2-4ac=64-4*1*16=64-64=0 - это значит будет один корень. -b/2a= -8/2=-4. Уравнение не будет равняться -4. Теперь ищем дискриминант к числителю: 10x^2+80+178=0 D=b^2-4ac=6400-4*10*178=6400-7120=-720 - значит таких чисел, при которых уравнения меньше или равняется нулю нет.
Мы имеем:
1 случай: а : 7 = n (ост.2) = n +2/7 ⇒ a = 7n + 2;
2 случай: A : 7 = n(ост.4) = n+ 4/7 ⇒ A = 7n + 4;
где n - неполное частное, число натурального ряда.
Возведем наши числа в квадрат:
а² = (7n + 2)² = 49n² + 28n + 4 = 7n(7n+4) + 4
A² = (7n + 4)² = 49n² + 56n + 16 = 7n(7n+8) + 16
Разделим квадраты чисел на 7:
а² : 7 = n(n+4) + 4/7,
A²: 7 = n(n+8) + 16/7 = [n(n+8) +2] + 2/7 (так как из неправильной дроби 17 можно выделить целую часть и прибавить ее к неполному частному: 16/7=2ц 2/7)
Мы видим, что при делении а² на 7 остаток получается 4, а при делении А² на 7 остаток 2, значит, остаток в первом случае БОЛЬШЕ ( 4/7>2/7)
ответ: при делении квадрата числа а на 7 остаток будет больше в случае, когда остаток от деления самого а на 7 меньше, те когда остаток от самого числа будет 2, а не 4.
Правильный номер ответа: 1
-18/x^2+8x+16-10>= -> (приводим 10 к общему знаменателю с первой половиной) доставляйте сами больше или равно 0, ибо у меня подобные знаки только вас запутают, я вспомню о них в конце -> (-18/x^2+8x+16)-(10x^2+80x+160)/(x^2+8x+16) = (-18-10x^2-80x-160)/x^2+8x+16= (умножаем на -1 для удобства, при это знак меняется) -> 10x^2+80x+178/x^2+8x+16 меньше или равняется нулю. Теперь, ищем дискриминант к знаменателю, этим корням она не будет ровняться, так как делить на ноль в математике нельзя:
x^2+8x+16=0
D=b^2-4ac=64-4*1*16=64-64=0 - это значит будет один корень. -b/2a= -8/2=-4. Уравнение не будет равняться -4.
Теперь ищем дискриминант к числителю:
10x^2+80+178=0
D=b^2-4ac=6400-4*10*178=6400-7120=-720 - значит таких чисел, при которых уравнения меньше или равняется нулю нет.