Выполнить действия над комплексными числами, представив результат в алгебраичекой форме: 1. (2+3i)(3−i). 2. (2i−i2)2+(1−3i)3.(2i−i2)2+(1−3i)3. 3. 2−i1+i.2−i1+i. 4. (1+i)(3+i)3−i−(1−i)(3−i)3+i.(1+i)(3+i)3−i−(1−i)(3−i)3+i.
1. Для первого значения аргумента функция является непрерывной, т.к. подставляя значения аргумента в уравнение получим: 9/2 - это число, слудовательно, условие существования функции соблюдено. Для второго - разрывна, так как знаменатель оюращается в ноль, на ноль делить нельзя в школьной программе.2. Из последнего предложение следует, что точка 2 - точка разрыва функции, тогда сможем найти лево- и правосторонние пределы: lim x to 2- = 9/ 0- = - бесконечностьlim х to 2+ = 9/0+ = + бесконечность
Прологарифмируем обе части, получим:
lnA = ln(lim(x->1) (2x/(x+1))^(1/ln(2-x));
Знаки ln и lim можно поменять местами:
lnA = lim(x->1) (ln((2x/(x+1)^(1/ln(2-x;
lnA = lim(x->1) (ln(2x/(x+1))/ln(2-x)) = lim(x->1) ((ln2x - ln(x+1))/ln(2-x))
Получили неопределенность вида 0/0 при х->1. Применяем правило Лопиталя:
lim(x->1) ((ln2x - ln(x+1))/ln(2-x)) = lim(x->1) ((1/x - 1/(x+1))/(1/(x-2)).
Неопределенность раскрыта, подставляем х = 1:
lnA = ((1/1 - 1/2)/(1/(1-2)) = -0,5 => A = e^(-0,5) = 1/√e.