Выполнить операции над множествами. Найти пересечение, объединение, разность множеств А и В, В и А. Определить мощность данных множеств, записать все подмножества множества А. А={-2,5,3}, В={0,5,6,7}
4) Искомая площадь S=F(3)-F(0), где F(x)=∫(x²+1)*dx - первообразная функции y(x). Отсюда F(x)=1/3*x³+x+C, и тогда S=1/3*3³+3+C-C=12.
5) Разделив обе части уравнения на y, получаем уравнение с разделёнными переменными x²*dx=y*dy. Интегрируя, получаем: 1/2*y²=1/3*x³+C. Используя условие y(0)=1, приходим к уравнению 1/2=0+C, откуда C=1/2. Отсюда 1/2*y²=1/3*x³+1/2, или 3*y²-2*x³-3=0. Проверка: исходное уравнение можно записать в виде dy/dx=x²/y. Дифференцируя полученное решение по x, получаем: 6*y*y'-6*x²=0, откуда y'=dy/dx=x²/y, что совпадает с исходным уравнением - значит, уравнение решено правильно.
ответ: 4) S=12, 5) 3*y²-2*x³-3=0.
Пошаговое объяснение:
4) Искомая площадь S=F(3)-F(0), где F(x)=∫(x²+1)*dx - первообразная функции y(x). Отсюда F(x)=1/3*x³+x+C, и тогда S=1/3*3³+3+C-C=12.
5) Разделив обе части уравнения на y, получаем уравнение с разделёнными переменными x²*dx=y*dy. Интегрируя, получаем: 1/2*y²=1/3*x³+C. Используя условие y(0)=1, приходим к уравнению 1/2=0+C, откуда C=1/2. Отсюда 1/2*y²=1/3*x³+1/2, или 3*y²-2*x³-3=0. Проверка: исходное уравнение можно записать в виде dy/dx=x²/y. Дифференцируя полученное решение по x, получаем: 6*y*y'-6*x²=0, откуда y'=dy/dx=x²/y, что совпадает с исходным уравнением - значит, уравнение решено правильно.
Так как на мотете может выпасть орёл или герб, а всего монет три, то всего возможно вариантов 23 = 8. Возможные варианты выпадений:
1) О О О;
2) О О Р;
3) О Р О;
4) О Р Р;
5) Р О О;
6) Р О Р;
7) Р Р О;
8) Р Р Р;
Где Р – решка (герб), О – орёл.
Условию, что только на одной монете выпадет герб, удовлетворяют 3 случая: (2), (3), (5).
Чтобы найти вероятность, что герб выпадет только на одной монете, необходимо разделить благоприятные исходы на общее число исходов:
P = 3/8 = 0,375.
ответ: 0,375.
Условию, что на всех монетах выпадет герб, удовлетворяет 1 случай: (8).
Чтобы найти вероятность, что герб выпадет на всех монетах, необходимо разделить благоприятные исходы на общее число исходов:
P = 1/8 = 0,125.
ответ: 0,125.
Условию, что герб выпадет хотя бы на одной монете, удовлетворяет 7 случаев: с (2) по (8).
Чтобы найти вероятность, что герб выпадет хотя бы на одной монете, необходимо разделить благоприятные исходы на общее число исходов:
P = 7/8 = 0,875.
ответ: 0,875.
Условию, что герб выпадет не менее, чем на двух монетах, удовлетворяют 4 случая: (4), (6), (7), (8).
Чтобы найти вероятность, что герб выпадет не менее, чем на двух монетах, необходимо разделить благоприятные исходы на общее число исходов:
P = 4/8 = 0,5.
ответ: 0,5.