Учтём, что производная функции определена там же, где и сама функция. 3)Приравняем производную к 0 и найдём соответствующие x:
Дальше просто решаем это уравнение:
Числитель должен быть равным 0, знаменатель - отличным от него. Поэтому
4)Остался последний шаг. Мы нашли так называемую стационарную точку функции, то есть точку, в которой производная обращается в 0. Она и является потенциально точкой минимума в данном случае. Осталось это проверить. Как это проверяется? Достаточно убедиться, что при переходе через неё производная функции меняет знак с - на +. Вот такая схемка чередования знаков(определить их можно методом интервалов для дроби). Видим, что в данной точке производная меняет знак с + на -, значит, это не точка минимума - это точка максимума. Точки минимума у данной функции нет.
(5-x)(x-7)²>0 Произведение больше 0 если оба множителя больше 0 или оба множителя меньше 0, поэтому надо решить уравнения: 5-x=0 (x-7)²=0
5-x=0 (x-7)²=0 -x=-5 x-7=0 x=5 x=7
Далее отмечаем корни на числовой прямой и находим интервалы на которых произведение (5-х)(х-7)² больше 0 + - - (5)(7) Возьмём 4: (5-4)(4-7)²=1*(-3)²=9, значит на интервале (-∞;5) произведение >0, ставим +. Далее возьмём 6: (5-6)(6-7)²=(-1)(-1)²=-1, значит на интервале (5;7) произведение <0, ставим -. Теперь возьмём 8: (5-8)(8-7)²=(-3)(1)²=-3, значит на интервале (7;∞) произведение <0, ставим -. Получается что произведение больше 0 только на интервале (-∞;5) это и есть ответ.
2)Теперь найдём производную функции:
Учтём, что производная функции определена там же, где и сама функция.
3)Приравняем производную к 0 и найдём соответствующие x:
Дальше просто решаем это уравнение:
Числитель должен быть равным 0, знаменатель - отличным от него.
Поэтому
4)Остался последний шаг. Мы нашли так называемую стационарную точку функции, то есть точку, в которой производная обращается в 0. Она и является потенциально точкой минимума в данном случае. Осталось это проверить.
Как это проверяется? Достаточно убедиться, что при переходе через неё производная функции меняет знак с - на +.
Вот такая схемка чередования знаков(определить их можно методом интервалов для дроби). Видим, что в данной точке производная меняет знак с + на -, значит, это не точка минимума - это точка максимума. Точки минимума у данной функции нет.
Произведение больше 0 если оба множителя больше 0 или оба множителя меньше 0, поэтому надо решить уравнения:
5-x=0
(x-7)²=0
5-x=0 (x-7)²=0
-x=-5 x-7=0
x=5 x=7
Далее отмечаем корни на числовой прямой и находим интервалы на которых произведение (5-х)(х-7)² больше 0
+ - -
(5)(7)
Возьмём 4:
(5-4)(4-7)²=1*(-3)²=9, значит на интервале (-∞;5) произведение >0, ставим +.
Далее возьмём 6:
(5-6)(6-7)²=(-1)(-1)²=-1, значит на интервале (5;7) произведение <0, ставим -.
Теперь возьмём 8:
(5-8)(8-7)²=(-3)(1)²=-3, значит на интервале (7;∞) произведение <0, ставим -.
Получается что произведение больше 0 только на интервале (-∞;5) это и есть ответ.