Допустим, что такое сложение существует.
Запишем сложение в виде столбика:
М Э Х Э Э Л Э
У Ч У У Т А Л
5 0 5 2 0 2 0
Для удобства пронумеруем разряды: единицы будут 1, десятки -- 2 и так далее до 7.
1. Рассмотрим 1 разряд. "Э + Л = 0".
Это возможно в 2-х случаях:
Э = Л = 0 (не подходит, так как цифры должны быть разные);
Э + Л = 10 (тогда десяток перейдёт на разряд вперёд и останется 0).
Остаётся Э + Л = 10.
2. Рассмотрим 3 разряд. "Э + Т = 0". Возможно три случая:
Э = Т = 0 (не подходит, так как цифры должны быть разные);
Э + Т = 10 (не подходит, так как тогда Т = Л (пункт 1))
Э + Т = 9 (плюс единица из переполнения)
Остаётся Э + Т = 9.
3. Рассмотрим 6 разряд. "Э + Ч = 0". Возможно три случая:
Э = Ч = 0 (не подходит, так как цифры должны быть разные);
Э + Ч = 10 (не подходит, так как тогда Ч = Л (пункт 1))
Э + Ч = 9 (не подходит, так как тогда Ч = Т (пункт 2))
Таким образом, "Э + Ч ≠ 0", а это противоречит условию.
Значит, такого решения быть не может. Что и требовалось доказать.
4х=-6-7 -2х=-15+8 (х:3)= -6+5 6х= -45+13
4х=-13 -2х=-7 х:3= -1 6х = -32
х=-13:4 х=-7:(-2) х= -1*3 х= -32:6
х=-3¹/₄ х=3,5 х= -1 х= -5¹/₆
8х-4х-2х=22 5(х+2)=5х+10 Ιх-5Ι=12
2х=22 10х+10=5х+10 х-5=12, х-5=-12
х=11 10х-5х=10-10 х=12+5, х= -12+5
5х=0 х=17, х= -7
х=0
Ι2х+1Ι=13
2х+1=13, 2х+1= -13
2х=13-1, 2х= -13 -1
2х=12, 2х= -14
х=12:2, х= -14:2
х=6, х= -7
Слово"ответ" к каждоме уравнению напишете сами
Допустим, что такое сложение существует.
Запишем сложение в виде столбика:
М Э Х Э Э Л Э
У Ч У У Т А Л
5 0 5 2 0 2 0
Для удобства пронумеруем разряды: единицы будут 1, десятки -- 2 и так далее до 7.
1. Рассмотрим 1 разряд. "Э + Л = 0".
Это возможно в 2-х случаях:
Э = Л = 0 (не подходит, так как цифры должны быть разные);
Э + Л = 10 (тогда десяток перейдёт на разряд вперёд и останется 0).
Остаётся Э + Л = 10.
2. Рассмотрим 3 разряд. "Э + Т = 0". Возможно три случая:
Э = Т = 0 (не подходит, так как цифры должны быть разные);
Э + Т = 10 (не подходит, так как тогда Т = Л (пункт 1))
Э + Т = 9 (плюс единица из переполнения)
Остаётся Э + Т = 9.
3. Рассмотрим 6 разряд. "Э + Ч = 0". Возможно три случая:
Э = Ч = 0 (не подходит, так как цифры должны быть разные);
Э + Ч = 10 (не подходит, так как тогда Ч = Л (пункт 1))
Э + Ч = 9 (не подходит, так как тогда Ч = Т (пункт 2))
Таким образом, "Э + Ч ≠ 0", а это противоречит условию.
Значит, такого решения быть не может. Что и требовалось доказать.