ответ:М (1).
Пошаговое объяснение:
Найдём расстояние между точками А и В на координатной прямой.
Расстояние АО от точки А до нулевой координаты составит 1,5 единицы, расстояние ОВ от нулевой координаты до точки В - 6 единиц.
Длина отрезка АВ = АО + ОВ = 1,5 + 6 = 7,5 единиц.
АМ : МВ = 1 : 2 - то есть, расстояние от точки А до точки М вдвое меньше расстояния от точки М до точки В.
2 * АМ = ВМ, поэтому правомерно равенство АМ + 2 * АМ = АВ.
В численном выражении 3 * АМ = 7,5, тогда АМ = 2,5 единицы.
Определим координату точки М.
Расстояние от начала координат до точки М равно
ОМ = 2,5 - АО = 2,5 - 1,5 = 1.
Угловой коэффициент касательной к графику функции равен производной функции в точке касания.
Производная функции y=2-lnx равна -1/x.
Значит, уравнение касательной имеет вид y = (-1/x)*x+ 1 или y = 0.
В точке касания координаты кривой и прямой равны.
Приравняем: 2 - lnx = 0, отсюда x = e².
Точка касания В = (e²; 0).
Известна точка прямой на оси Оу - это свободный член уравнения прямой, то есть у = 1 при х = 0.
По двум точкам находим угловой коэффициент касательной.
k = Δy/Δx = (0 - 1)/(e² - 0) = -1/e².
ответ: а = -1/e².
ответ:М (1).
Пошаговое объяснение:
Найдём расстояние между точками А и В на координатной прямой.
Расстояние АО от точки А до нулевой координаты составит 1,5 единицы, расстояние ОВ от нулевой координаты до точки В - 6 единиц.
Длина отрезка АВ = АО + ОВ = 1,5 + 6 = 7,5 единиц.
АМ : МВ = 1 : 2 - то есть, расстояние от точки А до точки М вдвое меньше расстояния от точки М до точки В.
2 * АМ = ВМ, поэтому правомерно равенство АМ + 2 * АМ = АВ.
В численном выражении 3 * АМ = 7,5, тогда АМ = 2,5 единицы.
Определим координату точки М.
Расстояние от начала координат до точки М равно
ОМ = 2,5 - АО = 2,5 - 1,5 = 1.
Угловой коэффициент касательной к графику функции равен производной функции в точке касания.
Производная функции y=2-lnx равна -1/x.
Значит, уравнение касательной имеет вид y = (-1/x)*x+ 1 или y = 0.
В точке касания координаты кривой и прямой равны.
Приравняем: 2 - lnx = 0, отсюда x = e².
Точка касания В = (e²; 0).
Известна точка прямой на оси Оу - это свободный член уравнения прямой, то есть у = 1 при х = 0.
По двум точкам находим угловой коэффициент касательной.
k = Δy/Δx = (0 - 1)/(e² - 0) = -1/e².
ответ: а = -1/e².