При раскладке по 8, х=количество рядов, к - остаток, Р- общее количество плиток.
P=8*x+k
При раскладке по 9, у=количество рядов, (к-6) - остаток, Р- общее количество плиток.
P=9*x+(k-6)
Если ряд 8 не полный, то при минимальном количестве оставшихся плиток в 9 рядной раскладки 1 == к=1+6 для восьми рядной раскладки.
Следовательно к=1+6=7 (удовлетворяет условию восьми рядной раскладки 7<8)
составим уравнение приравняв по количеству плиток.
8*x+k=9*x+(k-6)
8х=9у-6
х=(9у-6)/8
Зная , что при полном заполнении раскладки по 8 число плиток = 64
64/9=7 (1 остаток)
То есть число у находится в пределах от 2 до 7
Подставляем в уравнение
значения предела , до получения по х целого числа.
6=9*6/8
В полной раскладке по 8 = 6 полных рядов
6*8=48
Прибавим коэффициент к = 7
Общее количество плиток
Р=8*6+7=48+7=55 штук
Пошаговое объяснение:
Дано: ΔDEX;
∠EDX = 2∠PDM;
∠OPD = ∠DPX; ∠KMD = ∠DME;
Доказать: OP + KM = PM
Доказательство:
Дополнительное построение.
Отложим отрезок РА = РО.
1. Рассмотрим ΔDOP и ΔDPA.
PA = PO (построение);
∠OPD = ∠DPX (условие)
DP - общая.
⇒ ΔDOP = ΔDPA (по двум сторонам и углу между ними. 1 признак)
⇒ ∠ODP = ∠PDA
2. Пусть ∠ODP = α, а ∠MDX = β.
∠EDX = 2∠PDM (по условию)
⇒ ∠PDM = α + β
∠ODP = ∠PDA = α (п.1)
⇒ ∠ADM = ∠PDM - ∠PDA = α + β - α = β
3. Рассмотрим ΔDAM и ΔDMK.
∠ADM = ∠MDK = β (п.2)
∠KMD = ∠DME (условие)
DM - общая.
⇒ ΔDAM = ΔDMK (по стороне и двум прилежащим углам. 2 признак)
⇒ АМ = МК
4. РМ = РА + АМ или РМ = PO + KM.
При раскладке по 8, х=количество рядов, к - остаток, Р- общее количество плиток.
P=8*x+k
При раскладке по 9, у=количество рядов, (к-6) - остаток, Р- общее количество плиток.
P=9*x+(k-6)
Если ряд 8 не полный, то при минимальном количестве оставшихся плиток в 9 рядной раскладки 1 == к=1+6 для восьми рядной раскладки.
Следовательно к=1+6=7 (удовлетворяет условию восьми рядной раскладки 7<8)
составим уравнение приравняв по количеству плиток.
8*x+k=9*x+(k-6)
8х=9у-6
х=(9у-6)/8
Зная , что при полном заполнении раскладки по 8 число плиток = 64
64/9=7 (1 остаток)
То есть число у находится в пределах от 2 до 7
Подставляем в уравнение
х=(9у-6)/8
значения предела , до получения по х целого числа.
6=9*6/8
В полной раскладке по 8 = 6 полных рядов
6*8=48
Прибавим коэффициент к = 7
Общее количество плиток
Р=8*6+7=48+7=55 штук
Пошаговое объяснение:
Пошаговое объяснение:
Дано: ΔDEX;
∠EDX = 2∠PDM;
∠OPD = ∠DPX; ∠KMD = ∠DME;
Доказать: OP + KM = PM
Доказательство:
Дополнительное построение.
Отложим отрезок РА = РО.
1. Рассмотрим ΔDOP и ΔDPA.
PA = PO (построение);
∠OPD = ∠DPX (условие)
DP - общая.
⇒ ΔDOP = ΔDPA (по двум сторонам и углу между ними. 1 признак)
В равных треугольниках против равных сторон лежат равные углы.⇒ ∠ODP = ∠PDA
2. Пусть ∠ODP = α, а ∠MDX = β.
∠EDX = 2∠PDM (по условию)
⇒ ∠PDM = α + β
∠ODP = ∠PDA = α (п.1)
⇒ ∠ADM = ∠PDM - ∠PDA = α + β - α = β
3. Рассмотрим ΔDAM и ΔDMK.
∠ADM = ∠MDK = β (п.2)
∠KMD = ∠DME (условие)
DM - общая.
⇒ ΔDAM = ΔDMK (по стороне и двум прилежащим углам. 2 признак)
В равных треугольниках против равных углов лежат равные стороны.⇒ АМ = МК
4. РМ = РА + АМ или РМ = PO + KM.