Выпуклый многогранник называется …, если все его грани равные правильные многоугольники и в каждой его вершине сходится одно и то же число ребер.
Выберите один ответ:
прямым
наклонным
правильным
Во Пока нет ответа
: 1,00
Не отмеченоОтметить во Текст во Множество всех … точек фигуры называется ее границей.
Выберите один ответ:
внутренних
особых
граничных
Во Пока нет ответа
: 1,00
Не отмеченоОтметить во Текст во Усеченная пирамида называется …, если она получена сечением правильной пирамиды плоскостью, параллельной основанию.
Выберите один ответ:
правильной
наклонной
прямой
Во Пока нет ответа
: 1,00
Не отмеченоОтметить во Текст во Многогранник называется …, если он расположен по одну сторону от плоскости каждой его грани.
Выберите один ответ:
выпуклым
правильным
наклонным
Во Пока нет ответа
: 1,00
Не отмеченоОтметить во Текст во Пирамида называется …, если ее основание правильный многоугольник, а отрезок, соединяющий вершину пирамиды с центром основания, является его высотой.
Выберите один ответ:
прямой
правильной
наклонной
Основание правильной треугольной пирамиды - равносторонний треугольник.
Высота основания AD - она же биссектриса и медиана.
Угол между боковым ребром и плоскостью основания - это по сути угол между боковым ребром AS и высотой основания AD.
Если сторона основания равна AB = AC = BC = a, то высота AD = a√3/2.
Высота самой пирамиды SO опускается в центр треугольника O, т.е. в точку, которая делит высоту основания в отношении 1:2.
AO = 2/3*AD = 2/3*a√3/2 = a√3/3
С другой стороны, боковое ребро AS, высота пирамиды SO и отрезок AO образуют прямоугольный треугольник, гипотенуза которого AS = 10 и угол SAO такой:
sin SAO = 0,8
Отсюда cos SAO = √(1 - 0,8^2) = √0,36 = 0,6,
катет AO = AO*cos SAO = 10*0,6 = 6
Получаем уравнение:
AO = a√3/3 = 6
a = 6*3/√3 = 6√3
Высота основания
AD = a√3/2 = 6√3*√3/2 = 6*3/2 = 9
2. Любую точку можно описать уравнением 15x - 6y, где x - количество прыжков вперёд, y - количество прыжков назад.
Все точки у нас кратные 5. Число 15 тоже кратно 5, значит 15x - число кратное 5.
Число 6y кратно 5 лишь тогда, когда y кратно 5. То есть 6y это числа 30, 60, 90 и т.д. Все эти числа делятся на 15, значит сумма 15x+6y делится на 15. То есть, кузнечик может допрыгать только в те точки, которые делятся на 15:
480/15 = 32 прыжка вперёд на 15.
115/15 - без остатка не делится.
555/15 = 37 прыжков вперёд на 15.
160/15 - без остатка не делится.
220/15 - без остатка не делится.
То есть, кузнечик может допрыгать только до точек 480 и 555, причём сделать это может различными
480 = 34*15 - 5*6
480 = 36*15 - 10*6
и так далее (x увеличивается на 2, y увеличивается на 5).