Возле знака бесконечности ВСЕГДА круглая скобка. Знак возле числа определяется, как правило, по знаку неравенства: ≤,≥ - нестрогое неравенство, точка на числовой прямой закрашена, и скобка квадратная, <,> - строгое неравенство, точка на числовой прямой незакрашена, и скобка круглая.
Меня научили запоминать всё это так: НЕСТРОГОЕ неравенство РАЗРЕШАЕТ тратить чернила: у него дорисован знак равенства, точка - закрашивается, и на квадратную скобку чернил уйдёт больше, а СТРОГОЕ неравенство НЕ РАЗРЕШАЕТ тратить чернила: у него сухие знаки больше-меньше, точечка - пустая, и скобка круглая, то есть берегущая чернила. Рассмотрим пример: 2х-5≤2 2х≤7 х≤3,5, НЕРАВЕНСТВО НЕСТРОГОЕ, следовательно, на числовой прямой икс будет лежать ЛЕВЕЕ, чем 3,5, кружочек с 3,5 будет ЗАКРАШЕН. Запись корней неравенства начинаем С САМОГО ЛЕВОГО, то есть от минус бесконечности, и завершаем числом 3,5 ВКЛЮЧИТЕЛЬНО. ответ: х∈(-∞;3,5].
Во многих исследованиях часто имеют дело с разнообразными совокупностями вещей и явлений, которые по одним признакам представляют собой единое целое, а по другим подразделяются на отдельные группы. Такие совокупности рассматривались ранее.
Так, в примере рассмотренном в разделе Первичная обработка результатов измерений ученики 3-го класса - это определенная совокупность элементов (учеников), представляющих собой единое целое, поскольку элементы (ученики), которые ее составляют, объединены определенным признаком - все они учатся в 3-м классе. В то же время они подразделяются на отдельные группы по другим признакам: полу, скорости чтения, успешности обучения и т. п.
Участники областной олимпиады по математике образуют единое целое. В то же время они могут быть разделены на группы: по регионам, где они учатся; по успехам выступления на областной олимпиаде; по классам, в которых они учатся; по характеру математических и т. п.
Совокупность, состоящая из однородных элементов, имеющих качественную общность, будем называть статистической совокупностью. Элементы, из которых состоит данная совокупность, называют ее членами. Количество элементов в совокупности называют его объемом. Объем совокупности будем обозначать через n.
Признак, по которому совокупность подразделяют на группы называют аргументом. Признак (аргумент) будем обозначать прописными латинскими буквами X, Y, Z, ... . Отдельные числовые значения аргумента называют его вариантами и обозначают через x1, x2, ..., xk. (Скорость чтения - признак, его значения - x1 = 110, x2 = 92, ..., x36 = 25.) Количество элементов совокупности, имеющих одинаковое числовое значение, мы назвали частотой данной варианты; частоты обозначили через n1, n2, ..., nk; n1 + n2 + ... + nk = n. Отношение частоты варианты к объему совокупности назвали относительной частотой варианты и обозначили через v1, v2, ..., vk; v1 + v2 + ... + vk = 1.
В исследованиях, изучая тот или иной признак, часто приходится сталкиваться с такими совокупностями, члены которых принимают различные значения (наряду с одинаковыми). Такую переменчивость значений признака называют его варьированием. Например, варьирование мы наблюдаем, изучая успешность учащихся по предмету, сформированность некоторого качества личности и т. п.
Знак возле числа определяется, как правило, по знаку неравенства:
≤,≥ - нестрогое неравенство, точка на числовой прямой закрашена, и скобка квадратная,
<,> - строгое неравенство, точка на числовой прямой незакрашена, и скобка круглая.
Меня научили запоминать всё это так:
НЕСТРОГОЕ неравенство РАЗРЕШАЕТ тратить чернила: у него дорисован знак равенства, точка - закрашивается, и на квадратную скобку чернил уйдёт больше, а
СТРОГОЕ неравенство НЕ РАЗРЕШАЕТ тратить чернила: у него сухие знаки больше-меньше, точечка - пустая, и скобка круглая, то есть берегущая чернила.
Рассмотрим пример:
2х-5≤2
2х≤7
х≤3,5, НЕРАВЕНСТВО НЕСТРОГОЕ, следовательно, на числовой прямой икс будет лежать ЛЕВЕЕ, чем 3,5, кружочек с 3,5 будет ЗАКРАШЕН. Запись корней неравенства начинаем С САМОГО ЛЕВОГО, то есть от минус бесконечности, и завершаем числом 3,5 ВКЛЮЧИТЕЛЬНО.
ответ: х∈(-∞;3,5].
Во многих исследованиях часто имеют дело с разнообразными совокупностями вещей и явлений, которые по одним признакам представляют собой единое целое, а по другим подразделяются на отдельные группы. Такие совокупности рассматривались ранее.
Так, в примере рассмотренном в разделе Первичная обработка результатов измерений ученики 3-го класса - это определенная совокупность элементов (учеников), представляющих собой единое целое, поскольку элементы (ученики), которые ее составляют, объединены определенным признаком - все они учатся в 3-м классе. В то же время они подразделяются на отдельные группы по другим признакам: полу, скорости чтения, успешности обучения и т. п.
Участники областной олимпиады по математике образуют единое целое. В то же время они могут быть разделены на группы: по регионам, где они учатся; по успехам выступления на областной олимпиаде; по классам, в которых они учатся; по характеру математических и т. п.
Совокупность, состоящая из однородных элементов, имеющих качественную общность, будем называть статистической совокупностью. Элементы, из которых состоит данная совокупность, называют ее членами. Количество элементов в совокупности называют его объемом. Объем совокупности будем обозначать через n.
Признак, по которому совокупность подразделяют на группы называют аргументом. Признак (аргумент) будем обозначать прописными латинскими буквами X, Y, Z, ... . Отдельные числовые значения аргумента называют его вариантами и обозначают через x1, x2, ..., xk. (Скорость чтения - признак, его значения - x1 = 110, x2 = 92, ..., x36 = 25.) Количество элементов совокупности, имеющих одинаковое числовое значение, мы назвали частотой данной варианты; частоты обозначили через n1, n2, ..., nk; n1 + n2 + ... + nk = n. Отношение частоты варианты к объему совокупности назвали относительной частотой варианты и обозначили через v1, v2, ..., vk; v1 + v2 + ... + vk = 1.
В исследованиях, изучая тот или иной признак, часто приходится сталкиваться с такими совокупностями, члены которых принимают различные значения (наряду с одинаковыми). Такую переменчивость значений признака называют его варьированием. Например, варьирование мы наблюдаем, изучая успешность учащихся по предмету, сформированность некоторого качества личности и т. п.