б) Здесь 1 заведомо есть, а 22 должно быть суммой всех чисел набора. Тогда, если 1 не брать, получится сумма 21, а её в списке нет. Значит, такого примера не существует.
в) Число 9 есть, а меньших нет, поэтому 10 и 11 непременно должны быть в наборе. Суммы 19, 20, 21 при этом будут встречаться, а никаких чисел от 12 до 18 включительно в наборе быть не может. Число 22 могло получиться или по причине его наличия в наборе, или как сумма меньших, но тогда это только 11+11. В первом случае получаем набор 9, 10, 11, 22, где сумма равна 52, и он не может содержать других чисел. Это один из вариантов, и он удовлетворяет условию. В случае, когда 11 повторяется, до общей суммы 52 не хватает 11, то есть 11 должно присутствовать трижды. Набор чисел 9, 10, 11, 11, 11 также удовлетворяет условию: все суммы из предыдущего варианта в нём встречаются, а новых, как легко убедиться, нет. Таким образом, условию удовлетворяют ровно два набора, указанные выше.
а) задумано три числа, из них два отрицательных и одно положительное число (если бы было наоборот, то положительных чисел в наборе было бы не меньше трех).
первое число: 6
чтобы получить 2, к 6 прибавляем -4. второе число найдено.
сумма отрицательных чисел: -11. третье число -7
б) пусть задумано 4 числа: -2 -1 0 1 : всего три нуля, недостаточно
задумано 5 чисел: -2 -1 0 1 2: 7 нулей. т.е. в последовательности из 5 чисел можно получить до 7 нулей
а) 2, 2, 2, 2
б) Здесь 1 заведомо есть, а 22 должно быть суммой всех чисел набора. Тогда, если 1 не брать, получится сумма 21, а её в списке нет. Значит, такого примера не существует.
в) Число 9 есть, а меньших нет, поэтому 10 и 11 непременно должны быть в наборе. Суммы 19, 20, 21 при этом будут встречаться, а никаких чисел от 12 до 18 включительно в наборе быть не может. Число 22 могло получиться или по причине его наличия в наборе, или как сумма меньших, но тогда это только 11+11. В первом случае получаем набор 9, 10, 11, 22, где сумма равна 52, и он не может содержать других чисел. Это один из вариантов, и он удовлетворяет условию. В случае, когда 11 повторяется, до общей суммы 52 не хватает 11, то есть 11 должно присутствовать трижды. Набор чисел 9, 10, 11, 11, 11 также удовлетворяет условию: все суммы из предыдущего варианта в нём встречаются, а новых, как легко убедиться, нет. Таким образом, условию удовлетворяют ровно два набора, указанные выше.
а) задумано три числа, из них два отрицательных и одно положительное число (если бы было наоборот, то положительных чисел в наборе было бы не меньше трех).
первое число: 6
чтобы получить 2, к 6 прибавляем -4. второе число найдено.
сумма отрицательных чисел: -11. третье число -7
б) пусть задумано 4 числа: -2 -1 0 1 : всего три нуля, недостаточно
задумано 5 чисел: -2 -1 0 1 2: 7 нулей. т.е. в последовательности из 5 чисел можно получить до 7 нулей
в) нет, не всегда. Пример: -3, 1, 2
Получаем набор: -3 -2 -1 0 1 2 3
Такой же набор можно получить из 3, -1, -2