ответ: 3 29/30
Пошаговое объяснение:
1) раскроем скобки:
-3 3/5 - 2 1/3 + 4 8/15 - 1 5/6 + 6 7/10 + 1/2
2) найдем сумму первых слагаемых:
-3 3/5 - 2 1/3 (приводим к общему знаменателю)
(-3 3/5) *3 - (2 1/3)*5 = -3 9/15 - 2 5/15 = -5 14/15
3) найдем сумму двух следующих слагаемых:
4 8/15 - 1 5/6 (приводим к общему знаменателю)
(4 8/15)*2 - (1 1/6)*5 = 4 16/30 - 1 25/30 так как у нас числитель первой дроби меньше числителя второй дроби, то мы должны занять у четверки еденичу, превратив ее в 30/30 и прибавить к числителю первой дроби, то етсь у нас получается:
3 46/30 - 1 25/30 = 2 21/30
4) складываем последние два слагаемых:
6 7/10 + 1 1/2 (приводим к общему знаменателю)
(6 7/10)+(1/2)*5 = 6 7/10+5/10 = 6 12/10 (выделяем целую часть) 7 2/10
5) подставляем полученные числа в общий пример с сохранением знаков:
-5 14/15 + 2 21/30 + 7 2/10
приводим к общему знаменателю: (-5 14/15)*2+(2 21/30)*1+(7 2/10)*3
-5 28/30 + 2 21/30 + 7 6/30
также превращаем дроби в неправильные и получаем:
(-178+81+216)/30 = 119/30 (выделяем целую часть) 3 29/30
Для дифференцирования понадобится несколько формул:
\begin{gathered}\left( f(x) + g(x) \right)' = f'(x) + g'(x)left( n\cdot f(x) \right)' = n\cdot f'(x)left( x^n \right)' = n \cdot x^{x-1}\end{gathered}
(f(x)+g(x))
′
=f
(x)+g
(x)
(n⋅f(x))
=n⋅f
(x
n
)
=n⋅x
x−1
Исходное выражение удобно представить в виде:
F(x) = 3 \sqrt[3]{x^2} - x = 3 x^{2/3} - xF(x)=3
3
x
2
−x=3x
2/3
−x
Продифференцировав его, получаем:
\begin{gathered}F'(x) = (3 x^{2/3} - x)' = (3 x^{2/3})' - (x)' = 3 \cdot \dfrac{2}{3} \cdot x^{2/3 - 1} - 1 = 2\cdot x^{-1/3} - 1 = \dfrac{2}{\sqrt[3]{x}} - 1F'(1) = \dfrac{2}{\sqrt[3]{1}} - 1 = 2 - 1 = 1\end{gathered}
F
(x)=(3x
−x)
=(3x
−(x)
=3⋅
⋅x
2/3−1
−1=2⋅x
−1/3
−1=
−1
(1)=
1
−1=2−1=1
ответ: 3 29/30
Пошаговое объяснение:
1) раскроем скобки:
-3 3/5 - 2 1/3 + 4 8/15 - 1 5/6 + 6 7/10 + 1/2
2) найдем сумму первых слагаемых:
-3 3/5 - 2 1/3 (приводим к общему знаменателю)
(-3 3/5) *3 - (2 1/3)*5 = -3 9/15 - 2 5/15 = -5 14/15
3) найдем сумму двух следующих слагаемых:
4 8/15 - 1 5/6 (приводим к общему знаменателю)
(4 8/15)*2 - (1 1/6)*5 = 4 16/30 - 1 25/30 так как у нас числитель первой дроби меньше числителя второй дроби, то мы должны занять у четверки еденичу, превратив ее в 30/30 и прибавить к числителю первой дроби, то етсь у нас получается:
3 46/30 - 1 25/30 = 2 21/30
4) складываем последние два слагаемых:
6 7/10 + 1 1/2 (приводим к общему знаменателю)
(6 7/10)+(1/2)*5 = 6 7/10+5/10 = 6 12/10 (выделяем целую часть) 7 2/10
5) подставляем полученные числа в общий пример с сохранением знаков:
-5 14/15 + 2 21/30 + 7 2/10
приводим к общему знаменателю: (-5 14/15)*2+(2 21/30)*1+(7 2/10)*3
-5 28/30 + 2 21/30 + 7 6/30
также превращаем дроби в неправильные и получаем:
(-178+81+216)/30 = 119/30 (выделяем целую часть) 3 29/30
ответ: 3 29/30
Для дифференцирования понадобится несколько формул:
\begin{gathered}\left( f(x) + g(x) \right)' = f'(x) + g'(x)left( n\cdot f(x) \right)' = n\cdot f'(x)left( x^n \right)' = n \cdot x^{x-1}\end{gathered}
(f(x)+g(x))
′
=f
′
(x)+g
′
(x)
(n⋅f(x))
′
=n⋅f
′
(x)
(x
n
)
′
=n⋅x
x−1
Исходное выражение удобно представить в виде:
F(x) = 3 \sqrt[3]{x^2} - x = 3 x^{2/3} - xF(x)=3
3
x
2
−x=3x
2/3
−x
Продифференцировав его, получаем:
\begin{gathered}F'(x) = (3 x^{2/3} - x)' = (3 x^{2/3})' - (x)' = 3 \cdot \dfrac{2}{3} \cdot x^{2/3 - 1} - 1 = 2\cdot x^{-1/3} - 1 = \dfrac{2}{\sqrt[3]{x}} - 1F'(1) = \dfrac{2}{\sqrt[3]{1}} - 1 = 2 - 1 = 1\end{gathered}
F
′
(x)=(3x
2/3
−x)
′
=(3x
2/3
)
′
−(x)
′
=3⋅
3
2
⋅x
2/3−1
−1=2⋅x
−1/3
−1=
3
x
2
−1
F
′
(1)=
3
1
2
−1=2−1=1