Высота правильной треугольной пирамиды равна 40 см, а угол, который образует апофема с плоскостью основания пирамиды, равен 30°. Вычисли объём пирамиды.
Предположим, что х принадлежит множеству целых чисел. решаем первое неравенство. -5< x-2< 5 -3< x< 7, т е х принадлежит промежутку (-3; 7), который содержит 9 целых чисел, крайние не включены, т к неравенство строгое. решаем второе неравенство x^2 > 16.решением является объединение двух промежутков х < -4 и x> 4. благоприятными событиями является выбор из девяти решений первого неравенства, которые также являются решениями и второго (их пересечение). это решения 5, 6,.7. вероятность -- это отношение благоприятных исходов( 3 ) к ко всем возможным (9), значит она равна 3/9=1/3
, где a и b - основания трапеции, а h - высота (S, разумеется, площадь).
Вот только одна проблема: мы не знаем высоты. Но чтобы ее узнать, можно отсечь от трапеции (например, справа) прямоугольный треугольник. Его гипотенуза (c)- это боковая сторона трапеции, которая равна 13. Нижний катет (b) будет равен . Почему - можно увидеть на рисунке ниже. Второй катет этого треугольника (а) - это и есть высота, которую можно найти по теореме Пифагора:
Теперь высоту мы знаем и можем найти площадь трапеции:
ответ: 180.
Вот формула площади трапеции:
, где a и b - основания трапеции, а h - высота (S, разумеется, площадь).
Вот только одна проблема: мы не знаем высоты. Но чтобы ее узнать, можно отсечь от трапеции (например, справа) прямоугольный треугольник. Его гипотенуза (c)- это боковая сторона трапеции, которая равна 13. Нижний катет (b) будет равен . Почему - можно увидеть на рисунке ниже. Второй катет этого треугольника (а) - это и есть высота, которую можно найти по теореме Пифагора:
Теперь высоту мы знаем и можем найти площадь трапеции:
Задача решена!