В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
habibullina342
habibullina342
25.02.2023 13:27 •  Математика

Высшая математика, сумма рядов


Высшая математика, сумма рядов

Показать ответ
Ответ:
Oksana91111
Oksana91111
15.10.2020 15:03

По первому признаку Лейбница каждый последующий член ряда по абсолютной величине должен быть меньше предыдущего, т.е. для нашего ряда это условие выполняется

\frac{2}{3}\frac{1}{3}\frac{2}{9}...

По второму признаку Лейбница предел ряда должен стремится к 0.

\lim_{n \to \infty} \frac{-2}{3n}=0

Второе условие Лейбница выполняется.  Таким образом, ряд сходится. Исследуем теперь ряд на абсолютной и условной сходимости. Для этого рассмотрим данный ряд по модулю

\Big|\sum^\infty_{n=1}\frac{(-1)^{n+1}\cdot 2}{3n}\Big|=\sum^\infty_{n=1}\frac{2}{3n}

Этот ряд расходится, так как это гармонический ряд и он является расходящимся.

Таким образом, данный исследуемый ряд сходится условно.

\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-...=-1+1+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-...=\frac{1}{e}\approx0{,}368

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота